Suppr超能文献

与亨廷顿舞蹈症相关的突变型亨廷顿蛋白外显子1纤维原子结构的综合测定。

Integrative determination of the atomic structure of mutant huntingtin exon 1 fibrils implicated in Huntington's disease.

作者信息

Bagherpoor Helabad Mahdi, Matlahov Irina, Kumar Raj, Daldrop Jan O, Jain Greeshma, Weingarth Markus, van der Wel Patrick C A, Miettinen Markus S

机构信息

Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.

Institute for Drug Discovery, Leipzig University Medical Center, 04103 Leipzig, Germany.

出版信息

bioRxiv. 2024 Sep 15:2023.07.21.549993. doi: 10.1101/2023.07.21.549993.

Abstract

Neurodegeneration in Huntington's disease (HD) is accompanied by the aggregation of fragments of the mutant huntingtin protein, a biomarker of disease progression. A particular pathogenic role has been attributed to the aggregation-prone huntingtin exon 1 (HTTex1), generated by aberrant splicing or proteolysis, and containing the expanded polyglutamine (polyQ) segment. Unlike amyloid fibrils from Parkinson's and Alzheimer's diseases, the atomic-level structure of HTTex1 fibrils has remained unknown, limiting diagnostic and treatment efforts. We present and analyze the structure of fibrils formed by polyQ peptides and polyQ-expanded HTTex1 in vitro. Atomic-resolution perspectives are enabled by an integrative analysis and unrestrained all-atom molecular dynamics (MD) simulations incorporating experimental data from electron microscopy (EM), solid-state NMR, and other techniques. Alongside the use of prior data, we report new magic angle spinning NMR studies of glutamine residues of the polyQ fibril core and surface, distinguished via hydrogen-deuterium exchange (HDX). Our study provides a new understanding of the structure of the core as well as surface of aggregated HTTex1, including the fuzzy coat and polyQ-water interface. The obtained data are discussed in context of their implications for understanding the detection of such aggregates (diagnostics) as well as known biological properties of the fibrils.

摘要

亨廷顿舞蹈症(HD)中的神经退行性变伴随着突变型亨廷顿蛋白片段的聚集,这是疾病进展的一个生物标志物。异常剪接或蛋白水解产生的、含有扩展型聚谷氨酰胺(polyQ)片段且易于聚集的亨廷顿蛋白外显子1(HTTex1)被认为具有特殊的致病作用。与帕金森病和阿尔茨海默病的淀粉样纤维不同,HTTex1纤维的原子级结构仍然未知,这限制了诊断和治疗工作。我们展示并分析了聚Q肽和聚Q扩展的HTTex1在体外形成的纤维结构。通过整合分析和无约束全原子分子动力学(MD)模拟,并结合来自电子显微镜(EM)、固态核磁共振(NMR)和其他技术的实验数据,实现了原子分辨率的视角。除了使用先前的数据,我们还报告了对聚Q纤维核心和表面谷氨酰胺残基的新的魔角旋转核磁共振研究,通过氢-氘交换(HDX)进行区分。我们的研究为聚集的HTTex1的核心以及表面结构,包括模糊涂层和聚Q-水界面,提供了新的理解。所获得的数据将结合其对理解此类聚集体的检测(诊断)以及纤维已知生物学特性的意义进行讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1589/11422896/0dcfd3a9d380/nihpp-2023.07.21.549993v2-f0001.jpg

相似文献

3
Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils.
J Struct Biol X. 2022 Nov 11;6:100077. doi: 10.1016/j.yjsbx.2022.100077. eCollection 2022.
4
Formation and Structure of Wild Type Huntingtin Exon-1 Fibrils.
Biochemistry. 2017 Jul 18;56(28):3579-3586. doi: 10.1021/acs.biochem.7b00138. Epub 2017 Jul 7.
5
Amplification of neurotoxic HTTex1 assemblies in human neurons.
Neurobiol Dis. 2021 Nov;159:105517. doi: 10.1016/j.nbd.2021.105517. Epub 2021 Sep 24.
7
Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
Biochemistry. 2015 Jun 30;54(25):3942-9. doi: 10.1021/acs.biochem.5b00281. Epub 2015 Jun 16.
8
Molecular basis of Q-length selectivity for the MW1 antibody-huntingtin interaction.
J Biol Chem. 2023 Apr;299(4):104616. doi: 10.1016/j.jbc.2023.104616. Epub 2023 Mar 16.
9
An Expanded Polyproline Domain Maintains Mutant Huntingtin Soluble and During Aging.
Front Mol Neurosci. 2021 Oct 15;14:721749. doi: 10.3389/fnmol.2021.721749. eCollection 2021.
10
Huntingtin exon 1 fibrils feature an interdigitated β-hairpin-based polyglutamine core.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1546-51. doi: 10.1073/pnas.1521933113. Epub 2016 Feb 1.

本文引用的文献

1
Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation.
Biochem Soc Trans. 2024 Apr 24;52(2):719-731. doi: 10.1042/BST20230731.
2
Pathologic polyglutamine aggregation begins with a self-poisoning polymer crystal.
Elife. 2023 Nov 3;12:RP86939. doi: 10.7554/eLife.86939.
3
Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils.
J Struct Biol X. 2022 Nov 11;6:100077. doi: 10.1016/j.yjsbx.2022.100077. eCollection 2022.
4
Structural Basis of Huntingtin Fibril Polymorphism Revealed by Cryogenic Electron Microscopy of Exon 1 HTT Fibrils.
J Am Chem Soc. 2022 Jun 22;144(24):10723-10735. doi: 10.1021/jacs.2c00509. Epub 2022 Jun 9.
5
Dihedral Angle Measurements for Structure Determination by Biomolecular Solid-State NMR Spectroscopy.
Front Mol Biosci. 2021 Dec 6;8:791090. doi: 10.3389/fmolb.2021.791090. eCollection 2021.
7
The expanding amyloid family: Structure, stability, function, and pathogenesis.
Cell. 2021 Sep 16;184(19):4857-4873. doi: 10.1016/j.cell.2021.08.013.
8
Huntingtin fibrils with different toxicity, structure, and seeding potential can be interconverted.
Nat Commun. 2021 Jul 13;12(1):4272. doi: 10.1038/s41467-021-24411-2.
10
Asparagine and Glutamine Side-Chains and Ladders in HET-s(218-289) Amyloid Fibrils Studied by Fast Magic-Angle Spinning NMR.
Front Mol Biosci. 2020 Sep 30;7:582033. doi: 10.3389/fmolb.2020.582033. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验