Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
J Biotechnol. 2012 Nov 30;162(1):28-39. doi: 10.1016/j.jbiotec.2012.05.009. Epub 2012 Jun 29.
Triacylglycerols (TAGs) from algae are considered to be a potentially viable source of biodiesel and thereby renewable energy, but at the moment very little is known about the biosynthetic pathway in these organisms. Here we compare what is currently known in eukaryotic algal species, in particular the characteristics of algal diacylglycerol acyltransferase (DGAT), the last enzyme of de novo TAG biosynthesis. Several studies in plants and mammals have shown that there are two DGAT isoforms, DGAT1 and DGAT2, which catalyse the same reaction but have no clear sequence similarities. Instead, they have differences in functionality and spatial and temporal expression patterns. Bioinformatic searches of sequenced algal genomes reveal that most algae have multiple copies of putative DGAT2s, whereas other eukaryotes have single genes. Investigating whether these putative isoforms are indeed functional and whether they confer significantly different phenotypes to algal cells will be vital for future efforts to genetically modify algae for biofuel production.
三酰基甘油(TAGs)藻类被认为是生物柴油和可再生能源的潜在可行来源,但目前对这些生物的生物合成途径知之甚少。在这里,我们比较了目前在真核藻类物种中已知的情况,特别是藻类二酰基甘油酰基转移酶(DGAT)的特性,这是从头合成 TAG 的最后一种酶。在植物和哺乳动物中的几项研究表明,存在两种 DGAT 同工型,DGAT1 和 DGAT2,它们催化相同的反应,但没有明显的序列相似性。相反,它们在功能和时空表达模式上存在差异。对已测序藻类基因组的生物信息学搜索表明,大多数藻类都有多个假定的 DGAT2 拷贝,而其他真核生物只有单个基因。研究这些假定的同工型是否确实具有功能,以及它们是否赋予藻类细胞显著不同的表型,对于未来为生物燃料生产而对藻类进行遗传修饰的努力将是至关重要的。