Suppr超能文献

溶剂-蛋白质相互作用的参数化及其在 NMR 蛋白质结构测定中的应用。

Parameterization of solvent-protein interaction and its use on NMR protein structure determination.

机构信息

Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

J Magn Reson. 2012 Aug;221:76-84. doi: 10.1016/j.jmr.2012.05.020. Epub 2012 Jun 7.

Abstract

NMR structure determination is frequently hindered by an insufficient amount of distance information for determining the correct fold of the protein in its early stages. In response we introduce a simple and general structure-based metric that can be used to incorporate NMR-based restraints on protein surface accessibility. This metric is inversely proportional to the sum of the inverse square distances to neighboring heavy atoms. We demonstrate the use of this restraint using a dataset from the water to protein magnetization transfer experiment on the protein Bax and the solvent paramagnetic relaxation enhancement experiment on the protein ubiquitin and Qua1 homodimer. The calculated solvent accessibility values using the new empirical function are well correlated with the experimental data. By incorporating an associated energy term into Xplor-NIH, we show that structure calculation with a limited number of additional experimental restraints, improves both the precision and accuracy of the resulting structures. This new empirical energy term will have general applicability to other types of solvent accessibility data.

摘要

NMR 结构测定经常受到用于确定蛋白质在早期阶段正确折叠的距离信息不足的阻碍。针对这一问题,我们引入了一种简单而通用的基于结构的度量标准,可以用于将基于 NMR 的蛋白质表面可及性约束纳入其中。该度量标准与到相邻重原子的倒数平方距离之和成反比。我们使用 Bax 蛋白的水到蛋白质磁化转移实验数据集和 ubiquitin 蛋白及 Qua1 同源二聚体的溶剂顺磁弛豫增强实验数据集展示了这种约束的使用。使用新的经验函数计算的溶剂可及性值与实验数据高度相关。通过将相关的能量项纳入 Xplor-NIH,我们表明,使用数量有限的附加实验约束进行结构计算,可以提高结构计算的精度和准确性。这个新的经验能量项将具有广泛的适用性,可用于其他类型的溶剂可及性数据。

相似文献

1
Parameterization of solvent-protein interaction and its use on NMR protein structure determination.
J Magn Reson. 2012 Aug;221:76-84. doi: 10.1016/j.jmr.2012.05.020. Epub 2012 Jun 7.
2
Solvent saturation transfer to proteins (SSTP) for structural and functional characterization of proteins.
J Biomol NMR. 2018 Jan;70(1):11-20. doi: 10.1007/s10858-017-0151-4. Epub 2017 Nov 30.
3
Refinement of NMR structures using implicit solvent and advanced sampling techniques.
J Am Chem Soc. 2004 Dec 15;126(49):16038-47. doi: 10.1021/ja047624f.
4
A practical implicit solvent potential for NMR structure calculation.
J Magn Reson. 2014 Jun;243:54-64. doi: 10.1016/j.jmr.2014.03.011. Epub 2014 Apr 2.
5
High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.
J Biomol NMR. 2017 Jan;67(1):35-49. doi: 10.1007/s10858-016-0082-5. Epub 2016 Dec 29.
7
Xplor-NIH: Better parameters and protocols for NMR protein structure determination.
Protein Sci. 2024 Apr;33(4):e4922. doi: 10.1002/pro.4922.
8
Modeling (15)N NMR chemical shift changes in protein backbone with pressure.
J Chem Phys. 2016 Aug 28;145(8):085104. doi: 10.1063/1.4961507.

引用本文的文献

1
Water Accessibility Refinement of the Extended Structure of KirBac1.1 in the Closed State.
Front Mol Biosci. 2021 Nov 30;8:772855. doi: 10.3389/fmolb.2021.772855. eCollection 2021.
2
NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins.
J Biomol NMR. 2019 Jul;73(6-7):305-317. doi: 10.1007/s10858-019-00248-2. Epub 2019 Jul 11.
3
Theory and practice of using solvent paramagnetic relaxation enhancement to characterize protein conformational dynamics.
Methods. 2018 Sep 15;148:48-56. doi: 10.1016/j.ymeth.2018.04.006. Epub 2018 Apr 12.
5
Solvent saturation transfer to proteins (SSTP) for structural and functional characterization of proteins.
J Biomol NMR. 2018 Jan;70(1):11-20. doi: 10.1007/s10858-017-0151-4. Epub 2017 Nov 30.
6
Characterization of Protein-Protein Interfaces in Large Complexes by Solid-State NMR Solvent Paramagnetic Relaxation Enhancements.
J Am Chem Soc. 2017 Sep 6;139(35):12165-12174. doi: 10.1021/jacs.7b03875. Epub 2017 Aug 25.
7
Xplor-NIH for molecular structure determination from NMR and other data sources.
Protein Sci. 2018 Jan;27(1):26-40. doi: 10.1002/pro.3248. Epub 2017 Sep 18.
8
RNA structure refinement using NMR solvent accessibility data.
Sci Rep. 2017 Jul 14;7(1):5393. doi: 10.1038/s41598-017-05821-z.
9
High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH.
J Biomol NMR. 2017 Jan;67(1):35-49. doi: 10.1007/s10858-016-0082-5. Epub 2016 Dec 29.
10
Prediction of Protein Structure Using Surface Accessibility Data.
Angew Chem Int Ed Engl. 2016 Sep 19;55(39):11970-4. doi: 10.1002/anie.201604788. Epub 2016 Aug 25.

本文引用的文献

1
New pulsed field gradient NMR experiments for the detection of bound water in proteins.
J Biomol NMR. 1995 Apr;5(3):306-10. doi: 10.1007/BF00211757.
2
NMR View: A computer program for the visualization and analysis of NMR data.
J Biomol NMR. 1994 Sep;4(5):603-14. doi: 10.1007/BF00404272.
4
Structural analysis of large protein complexes using solvent paramagnetic relaxation enhancements.
Angew Chem Int Ed Engl. 2011 Apr 18;50(17):3993-7. doi: 10.1002/anie.201007168. Epub 2011 Mar 25.
5
Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain.
Protein Sci. 2011 Mar;20(3):500-12. doi: 10.1002/pro.582. Epub 2011 Feb 17.
6
Site-resolved measurement of water-protein interactions by solution NMR.
Nat Struct Mol Biol. 2011 Feb;18(2):245-9. doi: 10.1038/nsmb.1955. Epub 2011 Jan 2.
7
Structural basis for homodimerization of the Src-associated during mitosis, 68-kDa protein (Sam68) Qua1 domain.
J Biol Chem. 2010 Sep 10;285(37):28893-901. doi: 10.1074/jbc.M110.126185. Epub 2010 Jul 6.
8
Protein NMR using paramagnetic ions.
Annu Rev Biophys. 2010;39:387-405. doi: 10.1146/annurev.biophys.093008.131321.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验