Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Nat Struct Mol Biol. 2011 Feb;18(2):245-9. doi: 10.1038/nsmb.1955. Epub 2011 Jan 2.
The interactions of biological macromolecules with water are fundamental to their structure, dynamics and function. Historically, characterization of the location and residence times of hydration waters of proteins in solution has been quite difficult. Confining proteins within the nanoscale interior of a reverse micelle slows water dynamics, allowing global protein-water interactions to be detected using nuclear magnetic resonance techniques. Complications that normally arise from hydrogen exchange and long-range dipolar coupling are overcome by the nature of the reverse micelle medium. Characterization of the hydration of ubiquitin demonstrates that encapsulation within a reverse micelle allows detection of dozens of hydration waters. Comparison of nuclear Overhauser effects obtained in the laboratory and rotating frames indicate a considerable range of hydration water dynamics is present on the protein surface. In addition, an unprecedented clustering of different hydration-dynamics classes of sites is evident.
生物大分子与水的相互作用是它们结构、动态和功能的基础。从历史上看,对蛋白质在溶液中结合水的位置和停留时间的描述一直相当困难。将蛋白质限制在反胶束的纳米级内部可以减缓水的动力学,从而可以使用核磁共振技术检测全局蛋白质-水相互作用。通过反胶束介质的性质克服了通常由氢交换和长程偶极耦合引起的复杂性。对泛素水合作用的描述表明,在反胶束内封装可以检测到数十种水合水。在实验室和旋转框架中获得的核奥弗豪瑟效应的比较表明,蛋白质表面存在相当大的水动力学范围。此外,不同水动力学类别的位点的空前聚类是显而易见的。