Suppr超能文献

forestSV:基于统计学习的结构变异发现。

forestSV: structural variant discovery through statistical learning.

机构信息

Beyster Center for Molecular Genomics of Neuropsychiatric Diseases, University of California, San Diego, La Jolla, California, USA.

出版信息

Nat Methods. 2012 Jul 1;9(8):819-21. doi: 10.1038/nmeth.2085.

Abstract

Detecting genomic structural variants from high-throughput sequencing data is a complex and unresolved challenge. We have developed a statistical learning approach, based on Random Forests, that integrates prior knowledge about the characteristics of structural variants and leads to improved discovery in high-throughput sequencing data. The implementation of this technique, forestSV, offers high sensitivity and specificity coupled with the flexibility of a data-driven approach.

摘要

从高通量测序数据中检测基因组结构变异是一个复杂且尚未解决的挑战。我们开发了一种基于随机森林的统计学习方法,该方法整合了关于结构变异特征的先验知识,可提高高通量测序数据中的发现能力。该技术的实现(forestSV)具有高灵敏度和特异性,以及数据驱动方法的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0dc/3427657/a6674a88a154/nihms-397916-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验