Suppr超能文献

纳米 RNA 对转录起始位点选择和基因表达的生长阶段依赖性调控。

Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs.

机构信息

Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA.

出版信息

Genes Dev. 2012 Jul 1;26(13):1498-507. doi: 10.1101/gad.192732.112.

Abstract

Prokaryotic and eukaryotic RNA polymerases can use 2- to ∼4-nt RNAs, "nanoRNAs," to prime transcription initiation in vitro. It has been proposed that nanoRNA-mediated priming of transcription can likewise occur under physiological conditions in vivo and influence transcription start site selection and gene expression. However, no direct evidence of such regulation has been presented. Here we demonstrate in Escherichia coli that nanoRNAs prime transcription in a growth phase-dependent manner, resulting in alterations in transcription start site selection and changes in gene expression. We further define a sequence element that determines, in part, whether a promoter will be targeted by nanoRNA-mediated priming. By establishing that a significant fraction of transcription initiation is primed in living cells, our findings contradict the conventional model that all cellular transcription is initiated using nucleoside triphosphates (NTPs) only. In addition, our findings identify nanoRNAs as a previously undocumented class of regulatory small RNAs that function by being directly incorporated into a target transcript.

摘要

原核生物和真核生物 RNA 聚合酶可以使用 2 到 ∼4 个核苷酸的 RNA(“纳米 RNA”),在体外启动转录。有人提出,纳米 RNA 介导的转录起始同样可以在体内生理条件下发生,并影响转录起始位点选择和基因表达。然而,尚未提出这种调控的直接证据。在这里,我们在大肠杆菌中证明,纳米 RNA 以生长阶段依赖的方式启动转录,导致转录起始位点选择的改变和基因表达的变化。我们进一步定义了一个序列元件,该元件部分决定了启动子是否会被纳米 RNA 介导的启动所靶向。通过确定在活细胞中有相当一部分转录起始是由引物启动的,我们的发现与传统模型相矛盾,传统模型认为所有细胞转录仅使用核苷三磷酸 (NTP) 启动。此外,我们的发现将纳米 RNA 鉴定为一类以前未被记录的调控小 RNA,其功能是通过直接整合到靶转录本中。

相似文献

3
NanoRNAs prime transcription initiation in vivo.小 RNA 可在体内引发转录起始。
Mol Cell. 2011 Jun 24;42(6):817-25. doi: 10.1016/j.molcel.2011.06.005.
5
The special existences: nanoRNA and nanoRNase.特殊存在:nanoRNA 和 nanoRNase。
Microbiol Res. 2018 Mar;207:134-139. doi: 10.1016/j.micres.2017.11.014. Epub 2017 Nov 29.

引用本文的文献

1
Understanding the impact of transcription byproducts and contaminants.了解转录副产物和污染物的影响。
Front Mol Biosci. 2024 Jul 10;11:1426129. doi: 10.3389/fmolb.2024.1426129. eCollection 2024.
2
Nano-RNases: oligo- or dinucleases?纳米核糖核酸酶:寡核苷酸或二核苷酸酶?
FEMS Microbiol Rev. 2022 Nov 2;46(6). doi: 10.1093/femsre/fuac038.
8
Regulation of mRNA Stability During Bacterial Stress Responses.细菌应激反应期间mRNA稳定性的调控
Front Microbiol. 2020 Sep 9;11:2111. doi: 10.3389/fmicb.2020.02111. eCollection 2020.

本文引用的文献

1
Identification of a novel nanoRNase in Bartonella.鉴定巴尔通体中的一种新型纳米核糖核酸酶。
Microbiology (Reading). 2012 Apr;158(Pt 4):886-895. doi: 10.1099/mic.0.054619-0. Epub 2012 Jan 19.
4
NanoRNAs prime transcription initiation in vivo.小 RNA 可在体内引发转录起始。
Mol Cell. 2011 Jun 24;42(6):817-25. doi: 10.1016/j.molcel.2011.06.005.
6
Regulatory RNAs in bacteria.细菌中的调控RNA
Cell. 2009 Feb 20;136(4):615-28. doi: 10.1016/j.cell.2009.01.043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验