MRC Biostatistics Unit, Cambridge, UK.
Clin Trials. 2012 Aug;9(4):396-407. doi: 10.1177/1740774512450098. Epub 2012 Jul 2.
Intention-to-treat (ITT) analysis requires all randomised individuals to be included in the analysis in the groups to which they were randomised. However, there is confusion about how ITT analysis should be performed in the presence of missing outcome data.
To explain, justify, and illustrate an ITT analysis strategy for randomised trials with incomplete outcome data.
We consider several methods of analysis and compare their underlying assumptions, plausibility, and numbers of individuals included. We illustrate the ITT analysis strategy using data from the UK700 trial in the management of severe mental illness.
Depending on the assumptions made about the missing data, some methods of analysis that include all randomised individuals may be less valid than methods that do not include all randomised individuals. Furthermore, some methods of analysis that include all randomised individuals are essentially equivalent to methods that do not include all randomised individuals.
This work assumes that the aim of analysis is to obtain an accurate estimate of the difference in outcome between randomised groups and not to obtain a conservative estimate with bias against the experimental intervention.
Clinical trials should employ an ITT analysis strategy, comprising a design that attempts to follow up all randomised individuals, a main analysis that is valid under a stated plausible assumption about the missing data, and sensitivity analyses that include all randomised individuals in order to explore the impact of departures from the assumption underlying the main analysis. Following this strategy recognises the extra uncertainty arising from missing outcomes and increases the incentive for researchers to minimise the extent of missing data.
意向治疗(ITT)分析要求将所有随机分组的个体纳入他们被随机分配到的组中进行分析。然而,对于存在缺失结局数据时应该如何进行 ITT 分析存在混淆。
解释、证明和举例说明针对存在不完全结局数据的随机试验的 ITT 分析策略。
我们考虑了几种分析方法,并比较了它们的基本假设、合理性和纳入的个体数量。我们使用 UK700 试验中严重精神疾病管理的数据来说明 ITT 分析策略。
根据对缺失数据的假设,一些纳入所有随机个体的分析方法可能不如不纳入所有随机个体的方法有效。此外,一些纳入所有随机个体的分析方法本质上等同于不纳入所有随机个体的方法。
本研究假设分析的目的是准确估计随机分组之间的结局差异,而不是采用有偏倚的保守估计方法不利于实验干预。
临床试验应采用 ITT 分析策略,包括旨在随访所有随机个体的设计、基于缺失数据的合理假设的有效主分析以及纳入所有随机个体的敏感性分析,以探索偏离主分析假设的影响。遵循这一策略可以认识到缺失结局带来的额外不确定性,并增加研究人员减少缺失数据程度的动力。