Suppr超能文献

纳入所有个体并不足够:意向治疗分析的教训。

Including all individuals is not enough: lessons for intention-to-treat analysis.

机构信息

MRC Biostatistics Unit, Cambridge, UK.

出版信息

Clin Trials. 2012 Aug;9(4):396-407. doi: 10.1177/1740774512450098. Epub 2012 Jul 2.

Abstract

BACKGROUND

Intention-to-treat (ITT) analysis requires all randomised individuals to be included in the analysis in the groups to which they were randomised. However, there is confusion about how ITT analysis should be performed in the presence of missing outcome data.

PURPOSES

To explain, justify, and illustrate an ITT analysis strategy for randomised trials with incomplete outcome data.

METHODS

We consider several methods of analysis and compare their underlying assumptions, plausibility, and numbers of individuals included. We illustrate the ITT analysis strategy using data from the UK700 trial in the management of severe mental illness.

RESULTS

Depending on the assumptions made about the missing data, some methods of analysis that include all randomised individuals may be less valid than methods that do not include all randomised individuals. Furthermore, some methods of analysis that include all randomised individuals are essentially equivalent to methods that do not include all randomised individuals.

LIMITATIONS

This work assumes that the aim of analysis is to obtain an accurate estimate of the difference in outcome between randomised groups and not to obtain a conservative estimate with bias against the experimental intervention.

CONCLUSIONS

Clinical trials should employ an ITT analysis strategy, comprising a design that attempts to follow up all randomised individuals, a main analysis that is valid under a stated plausible assumption about the missing data, and sensitivity analyses that include all randomised individuals in order to explore the impact of departures from the assumption underlying the main analysis. Following this strategy recognises the extra uncertainty arising from missing outcomes and increases the incentive for researchers to minimise the extent of missing data.

摘要

背景

意向治疗(ITT)分析要求将所有随机分组的个体纳入他们被随机分配到的组中进行分析。然而,对于存在缺失结局数据时应该如何进行 ITT 分析存在混淆。

目的

解释、证明和举例说明针对存在不完全结局数据的随机试验的 ITT 分析策略。

方法

我们考虑了几种分析方法,并比较了它们的基本假设、合理性和纳入的个体数量。我们使用 UK700 试验中严重精神疾病管理的数据来说明 ITT 分析策略。

结果

根据对缺失数据的假设,一些纳入所有随机个体的分析方法可能不如不纳入所有随机个体的方法有效。此外,一些纳入所有随机个体的分析方法本质上等同于不纳入所有随机个体的方法。

局限性

本研究假设分析的目的是准确估计随机分组之间的结局差异,而不是采用有偏倚的保守估计方法不利于实验干预。

结论

临床试验应采用 ITT 分析策略,包括旨在随访所有随机个体的设计、基于缺失数据的合理假设的有效主分析以及纳入所有随机个体的敏感性分析,以探索偏离主分析假设的影响。遵循这一策略可以认识到缺失结局带来的额外不确定性,并增加研究人员减少缺失数据程度的动力。

相似文献

1
Including all individuals is not enough: lessons for intention-to-treat analysis.
Clin Trials. 2012 Aug;9(4):396-407. doi: 10.1177/1740774512450098. Epub 2012 Jul 2.
3
4
Treatment of missing data in follow-up studies of randomised controlled trials: A systematic review of the literature.
Clin Trials. 2017 Aug;14(4):387-395. doi: 10.1177/1740774517703319. Epub 2017 Apr 6.
5
6
Intention-to-treat analysis with treatment discontinuation and missing data in clinical trials.
Stat Med. 2015 Jul 20;34(16):2381-90. doi: 10.1002/sim.6352. Epub 2014 Nov 3.
8
Addressing missing participant outcome data in dental clinical trials.
J Dent. 2015 Jun;43(6):605-18. doi: 10.1016/j.jdent.2015.03.007. Epub 2015 Mar 31.

引用本文的文献

8
Mindfulness and Cardiometabolic Health During Pregnancy: An Integrative Review.
Mindfulness (N Y). 2024 May;15(5):995-1013. doi: 10.1007/s12671-024-02337-2. Epub 2024 Mar 28.
9
Effects of coconut oil, olive oil, and butter on plasma fatty acids and metabolic risk factors: a randomized trial.
J Lipid Res. 2024 Dec;65(12):100681. doi: 10.1016/j.jlr.2024.100681. Epub 2024 Oct 28.

本文引用的文献

5
Last observation carried forward: a crystal ball?
J Biopharm Stat. 2009 Sep;19(5):872-88. doi: 10.1080/10543400903105406.
7
Missing data: discussion points from the PSI missing data expert group.
Pharm Stat. 2010 Oct-Dec;9(4):288-97. doi: 10.1002/pst.391.
10
MMRM vs. LOCF: a comprehensive comparison based on simulation study and 25 NDA datasets.
J Biopharm Stat. 2009;19(2):227-46. doi: 10.1080/10543400802609797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验