Suppr超能文献

吸入性炭疽在小鼠模型中的传播瓶颈。

Dissemination bottleneck in a murine model of inhalational anthrax.

机构信息

Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA.

出版信息

Infect Immun. 2012 Sep;80(9):3189-93. doi: 10.1128/IAI.00515-12. Epub 2012 Jul 2.

Abstract

Inhalational anthrax is caused by the sporulating bacterium Bacillus anthracis. A current model for progression in mammalian hosts includes inhalation of bacterial spores, phagocytosis of spores in the nasal mucosa-associated lymphoid tissue (NALT) and lungs by macrophages and dendritic cells, trafficking of phagocytes to draining lymph nodes, germination of spores and multiplication of vegetative bacteria in the NALT and lymph nodes, and dissemination of bacteria via the bloodstream to multiple organs. In previous studies, the kinetics of infection varied greatly among mice, leading us to hypothesize the existence of a bottleneck past which very few spores (perhaps only one) progress to allow the infection to proceed. To test this hypothesis, we engineered three strains of B. anthracis Sterne, each marked with a different fluorescent protein, enabling visual differentiation of strains grown on plates. Mice were infected with a mixture of the three strains, the infection was allowed to proceed, and the strains colonizing the organs were identified. Although the inoculum consisted of approximately equal numbers of each of the three strains, the distal organs were consistently colonized by a majority of only one of the three strains, with the dominant strain varying among animals. Such dominance of one strain over the other two was also found at early time points in the cervical lymph nodes but not in the mediastinal lymph nodes. These results support the existence of a bottleneck in the infectious process.

摘要

吸入性炭疽是由形成孢子的炭疽杆菌引起的。目前,哺乳动物宿主中疾病进展的模型包括:细菌孢子吸入、巨噬细胞和树突状细胞吞噬鼻腔黏膜相关淋巴组织(NALT)和肺部中的孢子、吞噬细胞向引流淋巴结的转移、孢子萌发和营养细菌在 NALT 和淋巴结中的繁殖,以及细菌通过血液传播到多个器官。在之前的研究中,老鼠之间的感染动力学差异很大,这使我们假设存在一个瓶颈,只有极少数的孢子(也许只有一个)能够突破瓶颈,从而使感染继续进行。为了验证这一假设,我们构建了三种炭疽杆菌斯特恩菌株,每种菌株都标记有不同的荧光蛋白,使我们能够在平板上区分不同菌株的生长情况。用三种菌株的混合物感染老鼠,让感染继续进行,并确定定植在器官中的菌株。尽管接种物中三种菌株的数量大致相等,但远端器官始终被三种菌株中的一种主要定植,而优势菌株在不同动物之间有所不同。在颈部淋巴结的早期阶段也发现了一种菌株对其他两种菌株的这种优势,但在纵隔淋巴结中没有发现这种优势。这些结果支持感染过程中存在瓶颈。

相似文献

1
Dissemination bottleneck in a murine model of inhalational anthrax.
Infect Immun. 2012 Sep;80(9):3189-93. doi: 10.1128/IAI.00515-12. Epub 2012 Jul 2.
3
Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a rapid process facilitated by CD11c+ cells.
Microb Pathog. 2010 Jul-Aug;49(1-2):38-46. doi: 10.1016/j.micpath.2010.02.004. Epub 2010 Feb 25.
4
A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity.
Front Immunol. 2021 Aug 23;12:688257. doi: 10.3389/fimmu.2021.688257. eCollection 2021.
6
Dendritic cells endocytose Bacillus anthracis spores: implications for anthrax pathogenesis.
J Immunol. 2005 May 1;174(9):5545-52. doi: 10.4049/jimmunol.174.9.5545.
7
Lung dendritic cells rapidly mediate anthrax spore entry through the pulmonary route.
J Immunol. 2007 Jun 15;178(12):7994-8001. doi: 10.4049/jimmunol.178.12.7994.
8
Primary involvement of pharynx and peyer's patch in inhalational and intestinal anthrax.
PLoS Pathog. 2007 Jun;3(6):e76. doi: 10.1371/journal.ppat.0030076.
9
Bacillus anthracis spore movement does not require a carrier cell and is not affected by lethal toxin in human lung models.
Microbes Infect. 2016 Oct;18(10):615-626. doi: 10.1016/j.micinf.2016.06.004. Epub 2016 Jun 16.
10
Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through its host.
Infect Immun. 2012 May;80(5):1626-33. doi: 10.1128/IAI.06061-11. Epub 2012 Feb 21.

引用本文的文献

1
Inducible transposon mutagenesis identifies bacterial fitness determinants during infection in mice.
Nat Microbiol. 2025 May;10(5):1171-1183. doi: 10.1038/s41564-025-01975-z. Epub 2025 Mar 27.
4
Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species.
PLoS Pathog. 2021 Sep 16;17(9):e1009880. doi: 10.1371/journal.ppat.1009880. eCollection 2021 Sep.
5
The Role of Macrophages in Infection.
Front Immunol. 2021 Jan 19;11:620339. doi: 10.3389/fimmu.2020.620339. eCollection 2020.
7
Cathelicidin peptide rescues G. mellonella infected with B. anthracis.
Virulence. 2018 Jan 1;9(1):287-293. doi: 10.1080/21505594.2017.1293227. Epub 2017 Mar 8.
8
Surviving Between Hosts: Sporulation and Transmission.
Microbiol Spectr. 2016 Aug;4(4). doi: 10.1128/microbiolspec.VMBF-0029-2015.
9
Microfold Cells Actively Translocate Mycobacterium tuberculosis to Initiate Infection.
Cell Rep. 2016 Aug 2;16(5):1253-1258. doi: 10.1016/j.celrep.2016.06.080. Epub 2016 Jul 21.
10
Making pathogens sociable: the [corrected] emergence of high relatedness through limited host invasibility.
ISME J. 2015 Oct;9(10):2315-23. doi: 10.1038/ismej.2015.111. Epub 2015 Jun 30.

本文引用的文献

1
Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.
PLoS One. 2012;7(4):e34714. doi: 10.1371/journal.pone.0034714. Epub 2012 Apr 5.
4
Nod1/Nod2-mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure.
Infect Immun. 2009 Oct;77(10):4529-37. doi: 10.1128/IAI.00563-09. Epub 2009 Jul 20.
5
An experimental test of the independent action hypothesis in virus-insect pathosystems.
Proc Biol Sci. 2009 Jun 22;276(1665):2233-42. doi: 10.1098/rspb.2009.0064. Epub 2009 Mar 11.
7
Convergence of regulatory networks on the pilus locus of Streptococcus pneumoniae.
Infect Immun. 2008 Jul;76(7):3187-96. doi: 10.1128/IAI.00054-08. Epub 2008 Apr 28.
8
Bright far-red fluorescent protein for whole-body imaging.
Nat Methods. 2007 Sep;4(9):741-6. doi: 10.1038/nmeth1083. Epub 2007 Aug 26.
9
Murine aerosol challenge model of anthrax.
Infect Immun. 2007 Jun;75(6):2689-98. doi: 10.1128/IAI.01875-06. Epub 2007 Mar 12.
10
Structural basis for the fast maturation of Arthropoda green fluorescent protein.
EMBO Rep. 2006 Oct;7(10):1006-12. doi: 10.1038/sj.embor.7400787. Epub 2006 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验