Suppr超能文献

茚并异喹啉拓扑异构酶I抑制剂作为人肾癌细胞系SN12C抗癌药物的定量构效关系研究

Quantitative structure-activity relationship studies on indenoisoquinoline topoisomerase I inhibitors as anticancer agents in human renal cell carcinoma cell line SN12C.

作者信息

Zhi Yi, Yang Jin, Tian Shengchao, Yuan Fang, Liu Yang, Zhang Yi, Sun Pinghua, Song Bo, Chen Zhiwen

机构信息

Urology Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.

Department of Cell Biology, Third Military Medical University, Chongqing 400038, China.

出版信息

Int J Mol Sci. 2012;13(5):6009-6025. doi: 10.3390/ijms13056009. Epub 2012 May 18.

Abstract

Topoisomerase I is important for DNA replication and cell division, making it an attractive drug target for anticancer therapy. A series of indenoisoquinolines displaying potent Top1 inhibitory activity in human renal cell carcinoma cell line SN12C were selected to establish 3D-QSAR models using CoMFA and CoMSIA methods. Internal and external cross-validation techniques were investigated, as well as some measures taken, including region focusing, bootstrapping and the "leave-group-out" cross-validation method. The satisfactory CoMFA model predicted a q(2) value of 0.659 and an r(2) value of 0.949, indicating that electrostatic and steric properties play a significant role in potency. The best CoMSIA model, based on a combination of steric, electrostatic and H-bond acceptor descriptors, predicted a q(2) value of 0.523 and an r(2) value of 0.902. The models were graphically interpreted by contour plots which provided insight into the structural requirements for increasing the activity of a compound, providing a solid basis for future rational design of more active anticancer agents.

摘要

拓扑异构酶I对DNA复制和细胞分裂至关重要,这使其成为抗癌治疗中一个有吸引力的药物靶点。一系列在人肾癌细胞系SN12C中显示出强大拓扑异构酶1抑制活性的茚并异喹啉被选出来,使用比较分子场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA)建立三维定量构效关系(3D-QSAR)模型。研究了内部和外部交叉验证技术,以及采取的一些措施,包括区域聚焦、自举法和“留组法”交叉验证方法。令人满意的CoMFA模型预测的q(2)值为0.659,r(2)值为0.949,表明静电和空间性质在效力方面起着重要作用。基于空间、静电和氢键受体描述符组合的最佳CoMSIA模型预测的q(2)值为0.523,r(2)值为0.902。通过等高线图对模型进行了图形解释,这些图深入了解了提高化合物活性的结构要求,为未来合理设计更具活性的抗癌药物提供了坚实基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5367/3382809/0a507166e706/ijms-13-06009f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验