Suppr超能文献

体细胞重编程中表观遗传动力学的随机模型。

A stochastic model of epigenetic dynamics in somatic cell reprogramming.

作者信息

Flöttmann Max, Scharp Till, Klipp Edda

机构信息

Department of Biology, Theoretical Biophysics, Humboldt-Universität zu Berlin Berlin, Germany.

出版信息

Front Physiol. 2012 Jun 27;3:216. doi: 10.3389/fphys.2012.00216. eCollection 2012.

Abstract

Somatic cell reprogramming has dramatically changed stem cell research in recent years. The high pace of new findings in the field and an ever increasing amount of data from new high throughput techniques make it challenging to isolate core principles of the process. In order to analyze such mechanisms, we developed an abstract mechanistic model of a subset of the known regulatory processes during cell differentiation and production of induced pluripotent stem cells. This probabilistic Boolean network describes the interplay between gene expression, chromatin modifications, and DNA methylation. The model incorporates recent findings in epigenetics and partially reproduces experimentally observed reprogramming efficiencies and changes in methylation and chromatin remodeling. It enables us to investigate, how the temporal progression of the process is regulated. It also explicitly includes the transduction of factors using viral vectors and their silencing in reprogrammed cells, since this is still a standard procedure in somatic cell reprogramming. Based on the model we calculate an epigenetic landscape for probabilities of cell states. Simulation results show good reproduction of experimental observations during reprogramming, despite the simple structure of the model. An extensive analysis and introduced variations hint toward possible optimizations of the process that could push the technique closer to clinical applications. Faster changes in DNA methylation increase the speed of reprogramming at the expense of efficiency, while accelerated chromatin modifications moderately improve efficiency.

摘要

近年来,体细胞重编程极大地改变了干细胞研究。该领域新发现的快速涌现以及来自新高通量技术的海量数据不断增加,使得分离该过程的核心原理具有挑战性。为了分析此类机制,我们开发了一个抽象的机械模型,用于描述细胞分化和诱导多能干细胞产生过程中已知调控过程的一个子集。这个概率布尔网络描述了基因表达、染色质修饰和DNA甲基化之间的相互作用。该模型纳入了表观遗传学的最新发现,并部分再现了实验观察到的重编程效率以及甲基化和染色质重塑的变化。它使我们能够研究该过程的时间进程是如何调控的。它还明确包括了使用病毒载体转导因子及其在重编程细胞中的沉默,因为这仍然是体细胞重编程中的标准程序。基于该模型,我们计算了细胞状态概率的表观遗传景观。模拟结果表明,尽管模型结构简单,但在重编程过程中能很好地再现实验观察结果。广泛的分析和引入的变体暗示了该过程可能的优化方向,这可能会使该技术更接近临床应用。DNA甲基化的更快变化以效率为代价提高了重编程速度,而加速的染色质修饰适度提高了效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f9f/3384084/8e4cbdb73a75/fphys-03-00216-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验