Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 4N2, Canada.
Med Phys. 2012 Jun;39(6):3041-50. doi: 10.1118/1.4711750.
To investigate and validate the clinical feasibility of using half-value layer (HVL) and peak tube potential (kVp) for characterizing a kilovoltage (kV) source spectrum for the purpose of computing kV x-ray dose accrued from imaging procedures. To use this approach to characterize a Varian® On-Board Imager® (OBI) source and perform experimental validation of a novel in-house hybrid dose computation algorithm for kV x-rays.
We characterized the spectrum of an imaging kV x-ray source using the HVL and the kVp as the sole beam quality identifiers using third-party freeware Spektr to generate the spectra. We studied the sensitivity of our dose computation algorithm to uncertainties in the beam's HVL and kVp by systematically varying these spectral parameters. To validate our approach experimentally, we characterized the spectrum of a Varian® OBI system by measuring the HVL using a Farmer-type Capintec ion chamber (0.06 cc) in air and compared dose calculations using our computationally validated in-house kV dose calculation code to measured percent depth-dose and transverse dose profiles for 80, 100, and 125 kVp open beams in a homogeneous phantom and a heterogeneous phantom comprising tissue, lung, and bone equivalent materials.
The sensitivity analysis of the beam quality parameters (i.e., HVL, kVp, and field size) on dose computation accuracy shows that typical measurement uncertainties in the HVL and kVp (±0.2 mm Al and ±2 kVp, respectively) source characterization parameters lead to dose computation errors of less than 2%. Furthermore, for an open beam with no added filtration, HVL variations affect dose computation accuracy by less than 1% for a 125 kVp beam when field size is varied from 5 × 5 cm(2) to 40 × 40 cm(2). The central axis depth dose calculations and experimental measurements for the 80, 100, and 125 kVp energies agreed within 2% for the homogeneous and heterogeneous block phantoms, and agreement for the transverse dose profiles was within 6%.
The HVL and kVp are sufficient for characterizing a kV x-ray source spectrum for accurate dose computation. As these parameters can be easily and accurately measured, they provide for a clinically feasible approach to characterizing a kV energy spectrum to be used for patient specific x-ray dose computations. Furthermore, these results provide experimental validation of our novel hybrid dose computation algorithm.
研究并验证使用半价层(HVL)和峰值管电压(kVp)来描述千伏(kV)射线源谱的临床可行性,以便计算成像过程中累积的 kV 射线剂量。使用这种方法来描述瓦里安(Varian)On-Board Imager(OBI)源,并对我们新开发的用于计算 kV 射线的内部混合剂量计算算法进行实验验证。
我们使用第三方免费软件 Spektr 来描述成像千伏 X 射线源的光谱,仅使用 HVL 和 kVp 作为唯一的射线质量标识符来生成光谱。我们通过系统地改变这些光谱参数来研究我们的剂量计算算法对束 HVL 和 kVp 不确定性的敏感性。为了通过实验验证我们的方法,我们使用 Farmer 型 Capintec 电离室(0.06 cc)在空气中测量 HVL 来描述瓦里安(Varian)OBI 系统的光谱,并将我们经过计算验证的内部 kV 剂量计算代码计算的剂量与在均匀和非均匀体模中测量的 80、100 和 125 kVp 开束的百分深度剂量和横向剂量分布进行比较,体模由组织、肺和骨等效材料组成。
对束质量参数(即 HVL、kVp 和射野大小)对剂量计算准确性的敏感性分析表明,HVL 和 kVp(分别为±0.2 mm Al 和±2 kVp)源特征参数的典型测量不确定度导致剂量计算误差小于 2%。此外,对于无附加过滤的开束,当射野大小从 5×5 cm²变为 40×40 cm²时,HVL 变化对 125 kVp 束的剂量计算精度的影响小于 1%。80、100 和 125 kVp 能量的中心轴深度剂量计算与实验测量在均匀和非均匀块状体模中一致,误差在 2%以内,横向剂量分布的一致性在 6%以内。
HVL 和 kVp 足以准确描述 kV X 射线源谱,用于精确的剂量计算。由于这些参数可以方便、准确地测量,因此为使用特定于患者的 X 射线剂量计算来描述千伏能量谱提供了一种临床可行的方法。此外,这些结果为我们新开发的混合剂量计算算法提供了实验验证。