Campbell Ian C, Ries Jared, Dhawan Saurabh S, Quyyumi Arshed A, Taylor W Robert, Oshinski John N
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
J Biomech Eng. 2012 May;134(5):051001. doi: 10.1115/1.4006681.
Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a "reference standard" of the patient's own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.
针对特定患者的计算流体动力学(CFD)是研究血流在疾病过程中作用的有力工具。诸如MRI和CT等现代临床成像技术能够提供有关血管几何形状的高分辨率信息,但在许多情况下,无法获得针对特定患者的入口速度信息。在这些情况下,必须选择简化的速度剖面。我们研究了与采用患者自身在颈动脉分叉处测量的速度剖面作为“参考标准”进行的模拟相比,理想化的入口速度剖面(钝形、抛物线形和沃默斯利流)如何影响针对特定患者的CFD结果。为了将这些影响的程度置于具体情境中,我们还研究了几何形状以及使用特定受试者的血流波形对CFD结果的影响。我们通过检查平均壁面剪应力(WSS)和振荡剪应力指数(OSI)的逐点百分比误差,并通过计算颈内动脉球部平均WSS和OSI轴向剖面之间的组内相关系数(ICC)来量化这些差异。抛物线形入口速度剖面产生的平均WSS和OSI与采用真实患者特定入口速度剖面的模拟最为相似。然而,血管几何形状的解剖变异以及使用非患者特定的血流波形对WSS和OSI结果的影响比入口速度剖面的选择更大。尽管对于所有CFD分析而言,仔细选择边界条件至关重要,但准确的患者特定几何形状重建和血管流速波形测量比速度剖面的选择更为重要。抛物线形速度剖面提供的结果与患者特定速度剖面最为相似。