Suppr超能文献

高效准确的贪心法在蛋白质相互作用网络中挖掘功能模块。

Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks.

机构信息

School of Computer Science and Engineering, Key Lab of Computer Network & Information Integration, MOE, Southeast University, Nanjing, 210018, China.

出版信息

BMC Bioinformatics. 2012 Jun 25;13 Suppl 10(Suppl 10):S19. doi: 10.1186/1471-2105-13-S10-S19.

Abstract

BACKGROUND

Most computational algorithms mainly focus on detecting highly connected subgraphs in PPI networks as protein complexes but ignore their inherent organization. Furthermore, many of these algorithms are computationally expensive. However, recent analysis indicates that experimentally detected protein complexes generally contain Core/attachment structures.

METHODS

In this paper, a Greedy Search Method based on Core-Attachment structure (GSM-CA) is proposed. The GSM-CA method detects densely connected regions in large protein-protein interaction networks based on the edge weight and two criteria for determining core nodes and attachment nodes. The GSM-CA method improves the prediction accuracy compared to other similar module detection approaches, however it is computationally expensive. Many module detection approaches are based on the traditional hierarchical methods, which is also computationally inefficient because the hierarchical tree structure produced by these approaches cannot provide adequate information to identify whether a network belongs to a module structure or not. In order to speed up the computational process, the Greedy Search Method based on Fast Clustering (GSM-FC) is proposed in this work. The edge weight based GSM-FC method uses a greedy procedure to traverse all edges just once to separate the network into the suitable set of modules.

RESULTS

The proposed methods are applied to the protein interaction network of S. cerevisiae. Experimental results indicate that many significant functional modules are detected, most of which match the known complexes. Results also demonstrate that the GSM-FC algorithm is faster and more accurate as compared to other competing algorithms.

CONCLUSIONS

Based on the new edge weight definition, the proposed algorithm takes advantages of the greedy search procedure to separate the network into the suitable set of modules. Experimental analysis shows that the identified modules are statistically significant. The algorithm can reduce the computational time significantly while keeping high prediction accuracy.

摘要

背景

大多数计算算法主要集中在检测 PPI 网络中的高度连接子图作为蛋白质复合物,但忽略了它们的固有组织。此外,许多这些算法的计算成本很高。然而,最近的分析表明,实验检测到的蛋白质复合物通常包含核心/附属结构。

方法

在本文中,提出了一种基于核心-附属结构的贪婪搜索方法(GSM-CA)。GSM-CA 方法基于边权重和两个用于确定核心节点和附属节点的标准,在大型蛋白质-蛋白质相互作用网络中检测密集连接的区域。与其他类似的模块检测方法相比,GSM-CA 方法提高了预测精度,但计算成本较高。许多模块检测方法基于传统的层次方法,这也计算效率低下,因为这些方法生成的层次树结构无法提供足够的信息来识别网络是否属于模块结构。为了加速计算过程,本文提出了基于快速聚类的贪婪搜索方法(GSM-FC)。基于边权重的 GSM-FC 方法使用贪婪过程仅遍历所有边一次,即可将网络分为合适的模块集。

结果

将所提出的方法应用于酿酒酵母的蛋白质相互作用网络。实验结果表明,检测到许多重要的功能模块,其中大多数与已知复合物匹配。结果还表明,GSM-FC 算法比其他竞争算法更快、更准确。

结论

基于新的边权重定义,所提出的算法利用贪婪搜索过程将网络分为合适的模块集。实验分析表明,所识别的模块具有统计学意义。该算法可以在保持高预测精度的同时,显著减少计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e34a/3314584/5e98e7be384d/1471-2105-13-S10-S19-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验