Suppr超能文献

一种基于新型子梯度优化算法的模块功能模块识别。

A novel subgradient-based optimization algorithm for blockmodel functional module identification.

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA.

出版信息

BMC Bioinformatics. 2013;14 Suppl 2(Suppl 2):S23. doi: 10.1186/1471-2105-14-S2-S23. Epub 2013 Jan 21.

Abstract

Functional module identification in biological networks may provide new insights into the complex interactions among biomolecules for a better understanding of cellular functional organization. Most of existing functional module identification methods are based on the optimization of network modularity and cluster networks into groups of nodes within which there are a higher-than-expectation number of edges. However, module identification simply based on this topological criterion may not discover certain kinds of biologically meaningful modules within which nodes are sparsely connected but have similar interaction patterns with the rest of the network. In order to unearth more biologically meaningful functional modules, we propose a novel efficient convex programming algorithm based on the subgradient method with heuristic path generation to solve the problem in a recently proposed framework of blockmodel module identification. We have implemented our algorithm for large-scale protein-protein interaction (PPI) networks, including Saccharomyces cerevisia and Homo sapien PPI networks collected from the Database of Interaction Proteins (DIP) and Human Protein Reference Database (HPRD). Our experimental results have shown that our algorithm achieves comparable network clustering performance in comparison to the more time-consuming simulated annealing (SA) optimization. Furthermore, preliminary results for identifying fine-grained functional modules in both biological networks and the comparison with the commonly adopted Markov Clustering (MCL) algorithm have demonstrated the potential of our algorithm to discover new types of modules, within which proteins are sparsely connected but with significantly enriched biological functionalities.

摘要

生物网络中的功能模块识别可以为更好地理解细胞功能组织提供对生物分子之间复杂相互作用的新见解。大多数现有的功能模块识别方法都是基于网络模块性的优化和将网络聚类成节点组,在这些节点组中,边的数量高于预期。然而,仅仅基于这种拓扑标准的模块识别可能无法发现某些具有生物学意义的模块,这些模块中的节点连接稀疏,但与网络的其余部分具有相似的相互作用模式。为了挖掘更多具有生物学意义的功能模块,我们提出了一种新的有效的凸规划算法,该算法基于启发式路径生成的次梯度方法来解决最近提出的块模型模块识别框架中的问题。我们已经将我们的算法实现于大规模蛋白质-蛋白质相互作用(PPI)网络中,包括来自交互蛋白数据库(DIP)和人类蛋白质参考数据库(HPRD)的酿酒酵母和人类 PPI 网络。我们的实验结果表明,与更耗时的模拟退火(SA)优化相比,我们的算法在网络聚类性能方面具有可比性。此外,在生物网络中识别细粒度功能模块的初步结果以及与常用的 Markov 聚类(MCL)算法的比较表明,我们的算法具有发现新类型模块的潜力,这些模块中的蛋白质连接稀疏,但具有显著丰富的生物学功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb16/3549836/7f9b8a844e43/1471-2105-14-S2-S23-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验