Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, TX 76019, USA.
Proteome Sci. 2012 Jun 21;10 Suppl 1(Suppl 1):S13. doi: 10.1186/1477-5956-10-S1-S13.
The goal of personalized medicine is to provide patients optimal drug screening and treatment based on individual genomic or proteomic profiles. Reverse-Phase Protein Array (RPPA) technology offers proteomic information of cancer patients which may be directly related to drug sensitivity. For cancer patients with different drug sensitivity, the proteomic profiling reveals important pathophysiologic information which can be used to predict chemotherapy responses.
The goal of this paper is to present a framework for personalized medicine using both RPPA and drug sensitivity (drug resistance or intolerance). In the proposed personalized medicine system, the prediction of drug sensitivity is obtained by a proposed augmented naive Bayesian classifier (ANBC) whose edges between attributes are augmented in the network structure of naive Bayesian classifier. For discriminative structure learning of ANBC, local classification rate (LCR) is used to score augmented edges, and greedy search algorithm is used to find the discriminative structure that maximizes classification rate (CR). Once a classifier is trained by RPPA and drug sensitivity using cancer patient samples, the classifier is able to predict the drug sensitivity given RPPA information from a patient.
In this paper we proposed a framework for personalized medicine where a patient is profiled by RPPA and drug sensitivity is predicted by ANBC and LCR. Experimental results with lung cancer data demonstrate that RPPA can be used to profile patients for drug sensitivity prediction by Bayesian network classifier, and the proposed ANBC for personalized cancer medicine achieves better prediction accuracy than naive Bayes classifier in small sample size data on average and outperforms other the state-of-the-art classifier methods in terms of classification accuracy.
个性化医学的目标是根据个体基因组或蛋白质组谱为患者提供最佳的药物筛选和治疗。反相蛋白质阵列(RPPA)技术提供了癌症患者的蛋白质组学信息,这些信息可能与药物敏感性直接相关。对于具有不同药物敏感性的癌症患者,蛋白质组谱揭示了重要的病理生理信息,可用于预测化疗反应。
本文的目的是提出一个使用 RPPA 和药物敏感性(耐药性或不耐受性)的个性化医学框架。在提出的个性化医学系统中,通过提出的增强朴素贝叶斯分类器(ANBC)来获得药物敏感性预测,其属性之间的边缘在朴素贝叶斯分类器的网络结构中增强。对于 ANBC 的判别结构学习,使用局部分类率(LCR)对增强的边缘进行评分,并使用贪婪搜索算法找到最大化分类率(CR)的判别结构。一旦使用癌症患者样本通过 RPPA 和药物敏感性对分类器进行训练,该分类器就能够根据患者的 RPPA 信息预测药物敏感性。
在本文中,我们提出了一个个性化医学框架,其中通过 RPPA 对患者进行分析,通过 ANBC 和 LCR 预测药物敏感性。使用肺癌数据的实验结果表明,RPPA 可用于通过贝叶斯网络分类器对患者进行药物敏感性预测,并且所提出的用于个性化癌症医学的 ANBC 在小样本量数据上平均比朴素贝叶斯分类器具有更好的预测准确性,并且在分类准确性方面优于其他最先进的分类器方法。