National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China.
National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; Graduate University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China.
J Lipid Res. 2012 Oct;53(10):2102-2114. doi: 10.1194/jlr.M027557. Epub 2012 Jul 3.
Upon apoptotic stimuli, lysosomal proteases, including cathepsins and chymotrypsin, are released into cytosol due to lysosomal membrane permeabilization (LMP), where they trigger apoptosis via the lysosomal-mitochondrial pathway of apoptosis. Herein, the mechanism of LMP was investigated. We found that caspase 8-cleaved Bid (tBid) could result in LMP directly. Although Bax or Bak might modestly enhance tBid-triggered LMP, they are not necessary for LMP. To study this further, large unilamellar vesicles (LUVs), model membranes mimicking the lipid constitution of lysosomes, were used to reconstitute the membrane permeabilization process in vitro. We found that phosphatidic acid (PA), one of the major acidic phospholipids found in lysosome membrane, is essential for tBid-induced LMP. PA facilitates the insertion of tBid deeply into lipid bilayers, where it undergoes homo-oligomerization and triggers the formation of highly curved nonbilayer lipid phases. These events induce LMP via pore formation mechanisms because encapsulated fluorescein-conjugated dextran (FD)-20 was released more significantly than FD-70 or FD-250 from LUVs due to its smaller molecular size. On the basis of these data, we proposed tBid-PA interactions in the lysosomal membranes form lipidic pores and result in LMP. We further noted that chymotrypsin-cleaved Bid is more potent than tBid at binding to PA, inserting into the lipid bilayer, and promoting LMP. This amplification mechanism likely contributes to the culmination of apoptotic signaling.
在凋亡刺激下,由于溶酶体膜通透性增加(LMP),溶酶体蛋白酶,包括组织蛋白酶和糜蛋白酶,被释放到细胞质中,在那里它们通过溶酶体-线粒体凋亡途径触发凋亡。本文研究了 LMP 的机制。我们发现半胱天冬酶 8 切割的 Bid(tBid)可直接导致 LMP。虽然 Bax 或 Bak 可能适度增强 tBid 引发的 LMP,但它们不是 LMP 所必需的。为了进一步研究这一点,我们使用大单层囊泡(LUV),模拟溶酶体脂质组成的模型膜,在体外重建膜通透性增加过程。我们发现,磷脂酸(PA),溶酶体膜中主要的酸性磷脂之一,对于 tBid 诱导的 LMP 是必需的。PA 促进 tBid 深入插入脂质双层,在那里它发生同源寡聚化,并引发高度弯曲的非双层脂质相的形成。这些事件通过孔形成机制诱导 LMP,因为与 FD-70 或 FD-250 相比,较小分子量的荧光素偶联葡聚糖(FD)-20 从 LUV 中释放得更显著。基于这些数据,我们提出 tBid-PA 相互作用在溶酶体膜中形成脂质孔,并导致 LMP。我们进一步注意到,糜蛋白酶切割的 Bid 在与 PA 结合、插入脂质双层和促进 LMP 方面比 tBid 更有效。这种放大机制可能有助于凋亡信号的终结。