Applied Systems Biology, Leibniz-Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute and Friedrich Schiller University, Jena, Germany.
PLoS Comput Biol. 2012;8(6):e1002576. doi: 10.1371/journal.pcbi.1002576. Epub 2012 Jun 28.
Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA) model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.
线粒体动力学和线粒体自噬在确保线粒体质量控制方面起着关键作用。有研究提出,它们的功能障碍可能是导致神经退行性疾病、糖尿病和癌症的原因。线粒体功能障碍的积累与衰老进一步相关。在这里,我们应用了一种概率建模方法,整合了我们目前对线粒体生物学的了解,使我们能够在计算机上模拟衰老过程中线粒体的功能和质量控制。我们证明,融合和裂变循环以及线粒体自噬确实对于确保线粒体的高平均质量是必不可少的,即使在存在随机分子损伤的情况下也是如此。鉴于先前的观察结果表明线粒体裂变本身可能导致线粒体膜电位的部分下降,我们测试了线粒体动力学本身有害的后果。除了直接损害线粒体功能外,通过内容混合,预先存在的分子损伤可能在整个线粒体群体中传播和增强。在这种情况下,这种类似感染的现象会逐渐损害线粒体的质量控制。然而,当施加融合和裂变循环的年龄依赖性减速时,我们观察到线粒体平均质量损失的延迟。这为为什么在衰老过程中融合和裂变率会降低以及为什么缺失一种线粒体裂变因子可以延长真菌的寿命提供了一个合理的解释。我们提出了“线粒体感染性损伤适应”(MIDA)模型,根据该模型,融合-裂变循环的减速反映了一种系统性的适应,可延长寿命。