Ciquibic-Conicet, Universidad Nacional de Cordoba, Cordoba, Argentina.
PLoS Genet. 2012 Jun;8(6):e1002701. doi: 10.1371/journal.pgen.1002701. Epub 2012 Jun 28.
Recent studies in simple model organisms have shown that centromere pairing is important for ensuring high-fidelity meiotic chromosome segregation. However, this process and the mechanisms regulating it in higher eukaryotes are unknown. Here we present the first detailed study of meiotic centromere pairing in mouse spermatogenesis and link it with key events of the G2/metaphase I transition. In mouse we observed no evidence of the persistent coupling of centromeres that has been observed in several model organisms. We do however find that telomeres associate in non-homologous pairs or small groups in B type spermatogonia and pre-leptotene spermatocytes, and this association is disrupted by deletion of the synaptonemal complex component SYCP3. Intriguingly, we found that, in mid prophase, chromosome synapsis is not initiated at centromeres, and centromeric regions are the last to pair in the zygotene-pachytene transition. In late prophase, we first identified the proteins that reside at paired centromeres. We found that components of the central and lateral element and transverse filaments of the synaptonemal complex are retained at paired centromeres after disassembly of the synaptonemal complex along diplotene chromosome arms. The absence of SYCP1 prevents centromere pairing in knockout mouse spermatocytes. The localization dynamics of SYCP1 and SYCP3 suggest that they play different roles in promoting homologous centromere pairing. SYCP1 remains only at paired centromeres coincident with the time at which some kinetochore proteins begin loading at centromeres, consistent with a role in assembly of meiosis-specific kinetochores. After removal of SYCP1 from centromeres, SYCP3 then accumulates at paired centromeres where it may promote bi-orientation of homologous centromeres. We propose that, in addition to their roles as synaptonemal complex components, SYCP1 and SYCP3 act at the centromeres to promote the establishment and/or maintenance of centromere pairing and, by doing so, improve the segregation fidelity of mammalian meiotic chromosomes.
最近在简单模式生物中的研究表明,着丝粒配对对于确保减数分裂染色体的高保真分离至关重要。然而,在高等真核生物中,这一过程及其调控机制尚不清楚。在这里,我们首次详细研究了小鼠精子发生中的减数分裂着丝粒配对,并将其与 G2/中期 I 转换的关键事件联系起来。在小鼠中,我们没有观察到在几种模式生物中观察到的着丝粒持续偶联的证据。然而,我们确实发现端粒在 B 型精原细胞和早细线期精母细胞中以非同源对或小群的形式相互关联,这种关联会被联会复合体成分 SYCP3 的缺失所破坏。有趣的是,我们发现,在中期前期,染色体联会不是从着丝粒开始的,而且着丝粒区域是在合线期-粗线期转换中最后配对的。在晚期前期,我们首先确定了位于配对着丝粒上的蛋白质。我们发现,联会复合体的中央和侧元件以及横向纤维的成分在联会复合体沿着二分体染色体臂解体后仍保留在配对的着丝粒上。SYCP1 的缺失会阻止敲除小鼠精母细胞中的着丝粒配对。SYCP1 和 SYCP3 的定位动态表明,它们在促进同源着丝粒配对方面发挥着不同的作用。SYCP1 仅在配对着丝粒上定位,与一些动粒蛋白开始在着丝粒上加载的时间一致,这与组装减数分裂特异性动粒的作用一致。从着丝粒上去除 SYCP1 后,SYCP3 随后在配对着丝粒上积累,它可能促进同源着丝粒的双定向。我们提出,除了作为联会复合体成分的作用外,SYCP1 和 SYCP3 还在着丝粒上发挥作用,以促进着丝粒配对的建立和/或维持,并通过这种方式,提高哺乳动物减数分裂染色体的分离保真度。