Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
J Biol Chem. 2012 Aug 24;287(35):29589-98. doi: 10.1074/jbc.M112.378778. Epub 2012 Jul 4.
Elucidating molecular mechanisms by which lipids regulate protein function within biological membranes is critical for understanding the many cellular processes. Recently, we have found that dimeric αβ-tubulin, a subunit of microtubules, regulates mitochondrial respiration by blocking the voltage-dependent anion channel (VDAC) of mitochondrial outer membrane. Here, we show that the mechanism of VDAC blockage by tubulin involves tubulin interaction with the membrane as a critical step. The on-rate of the blockage varies up to 100-fold depending on the particular lipid composition used for bilayer formation in reconstitution experiments and increases with the increasing content of dioleoylphosphatidylethanolamine (DOPE) in dioleoylphosphatidylcholine (DOPC) bilayers. At physiologically low salt concentrations, the on-rate is decreased by the charged lipid. The off-rate of VDAC blockage by tubulin does not depend on the lipid composition. Using confocal fluorescence microscopy, we compared tubulin binding to the membranes of giant unilamellar vesicles (GUVs) made from DOPC and DOPC/DOPE mixtures. We found that detectable binding of the fluorescently labeled dimeric tubulin to GUV membranes requires the presence of DOPE. We propose that prior to the characteristic blockage of VDAC, tubulin first binds to the membrane in a lipid-dependent manner. We thus reveal a new potent regulatory role of the mitochondrial lipids in control of the mitochondrial outer membrane permeability and hence mitochondrial respiration through tuning VDAC sensitivity to blockage by tubulin. More generally, our findings give an example of the lipid-controlled protein-protein interaction where the choice of lipid species is able to change the equilibrium binding constant by orders of magnitude.
阐明脂质在生物膜内调节蛋白质功能的分子机制对于理解许多细胞过程至关重要。最近,我们发现二聚体αβ-微管蛋白(微管的一个亚基)通过阻断线粒体外膜的电压依赖性阴离子通道(VDAC)来调节线粒体呼吸。在这里,我们表明微管蛋白对 VDAC 的阻断机制涉及微管蛋白与膜的相互作用是一个关键步骤。阻断的进入速率取决于用于重组实验双层形成的特定脂质组成,在二油酰基磷脂酰乙醇胺(DOPE)含量增加的情况下,二油酰基磷脂酰胆碱(DOPC)双层中进入速率可增加高达 100 倍。在生理低盐浓度下,带电荷的脂质会降低进入速率。微管蛋白对 VDAC 的阻断的退出速率不依赖于脂质组成。使用共聚焦荧光显微镜,我们比较了微管蛋白与由 DOPC 和 DOPC/DOPE 混合物制成的巨大单层囊泡(GUV)的膜的结合。我们发现,可检测的荧光标记的二聚体微管蛋白与 GUV 膜的结合需要 DOPE 的存在。我们提出,在 VDAC 特征性阻断之前,微管蛋白首先以依赖脂质的方式结合到膜上。因此,我们揭示了线粒体脂质在通过调节 VDAC 对微管蛋白阻断的敏感性来控制线粒体外膜通透性和线粒体呼吸方面的新的有力调节作用。更一般地,我们的发现为脂质控制的蛋白质-蛋白质相互作用提供了一个例子,其中脂质种类的选择能够改变平衡结合常数达数量级。