BioMEMS Resource Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
Lab Chip. 2012 Sep 7;12(17):3159-67. doi: 10.1039/c2lc40109f. Epub 2012 Jul 5.
The ability to control cell-surface interactions in order to achieve binding of specific cell types is a major challenge for microfluidic immunoaffinity cell capture systems. In the majority of existing systems, the functionalized capture surface is constructed of solid materials, where flow stagnation at the solid-liquid interface is detrimental to the convection of cells to the surface. We study the use of ultra-high porosity (99%) nanoporous micro-posts in microfluidic channels for enhancing interception efficiency of particles in flow. We show using both modelling and experiment that nanoporous posts improve particle interception compared to solid posts through two distinct mechanisms: the increase of direct interception, and the reduction of near-surface hydrodynamic resistance. We provide initial validation that the improvement of interception efficiency also results in an increase in capture efficiency when comparing nanoporous vertically aligned carbon nanotube (VACNT) post arrays with solid PDMS post arrays of the same geometry. Using both bacteria (∼1 μm) and cancer cell lines (∼15 μm) as model systems, we found capture efficiency increases by 6-fold and 4-fold respectively. The combined model and experimental platform presents a new generation of nanoporous microfluidic devices for cell isolation.
能够控制细胞表面相互作用,以实现特定细胞类型的结合,是微流控免疫亲和细胞捕获系统的主要挑战。在大多数现有系统中,功能化的捕获表面由固体材料构成,而在固液界面处的流动停滞对细胞向表面的对流是有害的。我们研究了在微流道中使用超高孔隙率(99%)纳米多孔微柱来增强颗粒在流动中的拦截效率。我们通过建模和实验表明,与固体微柱相比,纳米多孔微柱通过两种不同的机制提高了颗粒的拦截效率:直接拦截的增加和近表面流体动力阻力的降低。我们初步验证了,当比较具有相同几何形状的固体 PDMS 微柱阵列和纳米多孔垂直排列碳纳米管(VACNT)微柱阵列时,拦截效率的提高也会导致捕获效率的提高。使用细菌(约 1μm)和癌细胞系(约 15μm)作为模型系统,我们发现捕获效率分别提高了 6 倍和 4 倍。这种组合的模型和实验平台为细胞分离提供了新一代的纳米多孔微流控器件。