BioMEMS Resource Center, Massachusetts General Hospital, 114 16th Street, Charlestown, MA 02139, USA.
Small. 2011 Apr 18;7(8):1061-7. doi: 10.1002/smll.201002076. Epub 2011 Mar 17.
Solid materials, such as silicon, glass, and polymers, dominate as structural elements in microsystems including microfluidics. Porous elements have been limited to membranes sandwiched between microchannel layers or polymer monoliths. This paper reports the use of micropatterned carbon-nanotube forests confined inside microfluidic channels for mechanically and/or chemically capturing particles ranging over three orders of magnitude in size. Nanoparticles below the internanotube spacing (80 nm) of the forest can penetrate inside the forest and interact with the large surface area created by individual nanotubes. For larger particles (>80 nm), the ultrahigh porosity of the nanotube elements reduces the fluid boundary layer and enhances particle-structure interactions on the outer surface of the patterned nanoporous elements. Specific biomolecular recognition is demonstrated using cells (≈10 μm), bacteria (≈1 μm), and viral-sized particles (≈40 nm) using both effects. This technology can provide unprecedented control of bioseparation processes to access bioparticles of interest, opening new pathways for both research and point-of-care diagnostics.
固体材料,如硅、玻璃和聚合物,在包括微流控在内的微系统中作为结构元件占据主导地位。多孔元件仅限于夹在微通道层之间的膜或聚合物整体式元件。本文报告了使用微图案化的碳纳米管森林限制在微流道内部,用于机械和/或化学捕获尺寸跨越三个数量级的颗粒。纳米管间距(80nm)以下的纳米颗粒可以穿透纳米管森林内部,并与单个纳米管所产生的大表面积相互作用。对于较大的颗粒(>80nm),纳米管元件的超高孔隙率减小了流体边界层,并增强了图案化纳米多孔元件外表面上的颗粒-结构相互作用。使用这两种效应,展示了对细胞(≈10μm)、细菌(≈1μm)和病毒大小的颗粒(≈40nm)进行特定的生物分子识别。这项技术可以为生物分离过程提供前所未有的控制,以获取感兴趣的生物颗粒,为研究和即时诊断开辟新途径。