Suppr超能文献

一种简单的贝叶斯决策理论设计用于剂量发现试验。

A simple Bayesian decision-theoretic design for dose-finding trials.

机构信息

Department of Statistics and Biostatistics, California State University at East Bay, Hayward, CA 94542, USA.

出版信息

Stat Med. 2012 Dec 10;31(28):3719-30. doi: 10.1002/sim.5438. Epub 2012 Jul 5.

Abstract

A flexible and simple Bayesian decision-theoretic design for dose-finding trials is proposed in this paper. In order to reduce the computational burden, we adopt a working model with conjugate priors, which is flexible to fit all monotonic dose-toxicity curves and produces analytic posterior distributions. We also discuss how to use a proper utility function to reflect the interest of the trial. Patients are allocated based on not only the utility function but also the chosen dose selection rule. The most popular dose selection rule is the one-step-look-ahead (OSLA), which selects the best-so-far dose. A more complicated rule, such as the two-step-look-ahead, is theoretically more efficient than the OSLA only when the required distributional assumptions are met, which is, however, often not the case in practice. We carried out extensive simulation studies to evaluate these two dose selection rules and found that OSLA was often more efficient than two-step-look-ahead under the proposed Bayesian structure. Moreover, our simulation results show that the proposed Bayesian method's performance is superior to several popular Bayesian methods and that the negative impact of prior misspecification can be managed in the design stage.

摘要

本文提出了一种灵活而简单的贝叶斯决策理论设计方法,用于剂量探索试验。为了降低计算负担,我们采用了具有共轭先验的工作模型,该模型灵活适用于拟合所有单调的剂量-毒性曲线,并产生分析后验分布。我们还讨论了如何使用适当的效用函数来反映试验的兴趣。患者的分配不仅基于效用函数,还基于所选的剂量选择规则。最受欢迎的剂量选择规则是一步前瞻性(OSLA),它选择迄今为止最好的剂量。只有在满足所需分布假设的情况下,两步前瞻性等更复杂的规则在理论上才比 OSLA 更有效,但在实践中情况往往并非如此。我们进行了广泛的模拟研究来评估这两种剂量选择规则,发现在提出的贝叶斯结构下,OSLA 通常比两步前瞻性更有效。此外,我们的模拟结果表明,所提出的贝叶斯方法的性能优于几种流行的贝叶斯方法,并且可以在设计阶段管理先验误定的负面影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验