State Key Laboratory for Physical Chemistry of Solid Surface, Xiamen University, 361005, China.
J Comput Chem. 2012 Oct 15;33(27):2142-60. doi: 10.1002/jcc.23051. Epub 2012 Jul 5.
Calculation of large complex systems remains to be a great challenge, where there is always a trade-off between accuracy and efficiency. Recently, we proposed the extended our own n-layered integrated molecular orbital (ONIOM) method (XO) (Guo, Wu, Xu, Chem. Phys. Lett. 2010, 498, 203) which surmounts some inherited limitations of the popular ONIOM method by introducing the inclusion-exclusion principle used in the fragmentation methods. The present work sets up general guidelines for the construction of a good XO scheme. In particular, force-error test is proposed to quantitatively validate the usefulness of an XO scheme, taking accuracy, efficiency and scalability all into account. Representative studies on zeolites, polypeptides and cyclodextrins have been carried out to demonstrate how to strive for high accuracy without sacrificing efficiency. As a natural extension, XO is applied to calculate the total energy, fully optimized geometry and vibrational spectra of the whole system, where ONIOM becomes inapplicable.
计算大型复杂系统仍然是一个巨大的挑战,在准确性和效率之间总是存在权衡。最近,我们提出了扩展我们自己的 n 层集成分子轨道(ONIOM)方法(XO)(Guo、Wu、Xu,Chem. Phys. Lett. 2010, 498, 203),通过引入在碎片方法中使用的包含-排除原理,克服了流行的 ONIOM 方法的一些固有局限性。本工作为构建良好 XO 方案建立了一般准则。特别是,提出了力误差测试来定量验证 XO 方案的有用性,同时考虑准确性、效率和可扩展性。对沸石、多肽和环糊精的代表性研究表明,如何在不牺牲效率的情况下追求高精度。作为自然延伸,XO 被应用于计算整个系统的总能量、完全优化的几何形状和振动光谱,其中 ONIOM 变得不适用。