Department of Chemistry, University of Copenhagen, Copenhagen, Denmark.
PLoS One. 2013 Apr 12;8(4):e60602. doi: 10.1371/journal.pone.0060602. Print 2013.
We extend the Effective Fragment Molecular Orbital (EFMO) method to the frozen domain approach where only the geometry of an active part is optimized, while the many-body polarization effects are considered for the whole system. The new approach efficiently mapped out the entire reaction path of chorismate mutase in less than four days using 80 cores on 20 nodes, where the whole system containing 2398 atoms is treated in the ab initio fashion without using any force fields. The reaction path is constructed automatically with the only assumption of defining the reaction coordinate a priori. We determine the reaction barrier of chorismate mutase to be [Formula: see text] kcal mol(-1) for MP2/cc-pVDZ and [Formula: see text] for MP2/cc-pVTZ in an ONIOM approach using EFMO-RHF/6-31G(d) for the high and low layers, respectively.
我们将有效片段分子轨道 (EFMO) 方法扩展到冷冻域方法,其中仅优化活性部分的几何形状,而对整个系统考虑多体极化效应。使用 20 个节点上的 80 个核心,新方法在不到四天的时间内高效地绘制出分支酸变位酶的整个反应路径,其中包含 2398 个原子的整个系统采用从头算方法处理,而不使用任何力场。反应路径是通过仅预先定义反应坐标的假设自动构建的。我们确定分支酸变位酶的反应势垒为 [Formula: see text] kcal mol(-1),对于 ONIOM 方法中的 MP2/cc-pVDZ 和 [Formula: see text],对于 MP2/cc-pVTZ,分别使用 EFMO-RHF/6-31G(d) 作为高低层。