Division of Cardiology, New York University School of Medicine, New York, NY, USA.
Cardiovasc Res. 2012 Sep 1;95(4):460-8. doi: 10.1093/cvr/cvs218. Epub 2012 Jul 3.
The shRNA-mediated loss of expression of the desmosomal protein plakophilin-2 leads to sodium current (I(Na)) dysfunction. Whether pkp2 gene haploinsufficiency leads to I(Na) deficit in vivo remains undefined. Mutations in pkp2 are detected in arrhythmogenic right ventricular cardiomyopathy (ARVC). Ventricular fibrillation and sudden death often occur in the 'concealed phase' of the disease, prior to overt structural damage. The mechanisms responsible for these arrhythmias remain poorly understood. We sought to characterize the morphology, histology, and ultrastructural features of PKP2-heterozygous-null (PKP2-Hz) murine hearts and explore the relation between PKP2 abundance, I(Na) function, and cardiac electrical synchrony.
Hearts of PKP2-Hz mice were characterized by multiple methods. We observed ultrastructural but not histological or gross anatomical differences in PKP2-Hz hearts compared with wild-type (WT) littermates. Yet, in myocytes, decreased amplitude and a shift in gating and kinetics of I(Na) were observed. To further unmask I(Na) deficiency, we exposed myocytes, Langendorff-perfused hearts, and anaesthetized animals to a pharmacological challenge (flecainide). In PKP2-Hz hearts, the extent of flecainide-induced I(Na) block, impaired ventricular conduction, and altered electrocardiographic parameters were larger than controls. Flecainide provoked ventricular arrhythmias and death in PKP2-Hz animals, but not in the WT.
PKP2 haploinsufficiency leads to I(Na) deficit in murine hearts. Our data support the notion of a cross-talk between desmosome and sodium channel complex. They also suggest that I(Na) dysfunction may contribute to generation and/or maintenance of arrhythmias in PKP2-deficient hearts. Whether pharmacological challenges could help unveil arrhythmia risk in patients with mutations or variants in PKP2 remains undefined.
shRNA 介导的桥粒蛋白 plakophilin-2 表达缺失导致钠电流 (I(Na)) 功能障碍。pkp2 基因杂合缺失是否导致体内 I(Na) 不足仍未确定。pkp2 中的突变在心律失常性右心室心肌病 (ARVC) 中被检测到。心室颤动和猝死常发生在疾病的“隐匿期”,即在明显结构损伤之前。这些心律失常的机制仍知之甚少。我们试图描述 PKP2 杂合缺失 (PKP2-Hz) 小鼠心脏的形态、组织学和超微结构特征,并探讨 PKP2 丰度、I(Na) 功能和心脏电同步之间的关系。
通过多种方法对 PKP2-Hz 小鼠的心脏进行了特征描述。与野生型 (WT) 同窝仔相比,我们观察到 PKP2-Hz 心脏的超微结构但没有组织学或大体解剖学差异。然而,在心肌细胞中,观察到 I(Na) 的幅度降低以及门控和动力学的改变。为了进一步揭示 I(Na) 缺陷,我们使心肌细胞、Langendorff 灌流心脏和麻醉动物暴露于药物挑战 (氟卡尼)。在 PKP2-Hz 心脏中,氟卡尼诱导的 I(Na) 阻断、心室传导受损和心电图参数改变的程度大于对照组。氟卡尼在 PKP2-Hz 动物中引起了室性心律失常和死亡,但在 WT 中没有。
PKP2 杂合缺失导致小鼠心脏的 I(Na) 不足。我们的数据支持桥粒体和钠通道复合物之间存在交叉对话的观点。它们还表明,I(Na) 功能障碍可能导致 PKP2 缺失心脏中心律失常的产生和/或维持。PKP2 突变或变异患者的药物挑战是否有助于揭示心律失常风险仍未确定。