The Leon H. Charney Division of Cardiology, NYU-Grossman School of Medicine, New York (M.P.-H., C.J.M.v.O., G.M.M.-L., M.Z., M.C., M.D.).
Department of Biomedical Sciences (N.B., E.T.V., A.S., F.B.H., M.J.D., K.Q., A.L.), University of Copenhagen, Denmark.
Circulation. 2022 Sep 13;146(11):851-867. doi: 10.1161/CIRCULATIONAHA.122.060454. Epub 2022 Aug 12.
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is characterized by high propensity to life-threatening arrhythmias and progressive loss of heart muscle. More than 40% of reported genetic variants linked to ARVC reside in the gene, which encodes the PKP2 protein (plakophilin-2).
We describe a comprehensive characterization of the ARVC molecular landscape as determined by high-resolution mass spectrometry, RNA sequencing, and transmission electron microscopy of right ventricular biopsy samples obtained from patients with ARVC with mutations and left ventricular ejection fraction >45%. Samples from healthy relatives served as controls. The observations led to experimental work using multiple imaging and biochemical techniques in mice with a cardiac-specific deletion of studied at a time of preserved left ventricular ejection fraction and in human induced pluripotent stem cell-derived PKP2-deficient myocytes.
Samples from patients with ARVC present a loss of nuclear envelope integrity, molecular signatures indicative of increased DNA damage, and a deficit in transcripts coding for proteins in the electron transport chain. Mice with a cardiac-specific deletion of also present a loss of nuclear envelope integrity, which leads to DNA damage and subsequent excess oxidant production (O and HO), the latter increased further under mechanical stress (isoproterenol or exercise). Increased oxidant production and DNA damage is recapitulated in human induced pluripotent stem cell-derived PKP2-deficient myocytes. Furthermore, PKP2-deficient cells release HO into the extracellular environment, causing DNA damage and increased oxidant production in neighboring myocytes in a paracrine manner. Treatment with honokiol increases SIRT3 (mitochondrial nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin-3) activity, reduces oxidant levels and DNA damage in vitro and in vivo, reduces collagen abundance in the right ventricular free wall, and has a protective effect on right ventricular function.
Loss of nuclear envelope integrity and subsequent DNA damage is a key substrate in the molecular pathology of ARVC. We show transcriptional downregulation of proteins of the electron transcript chain as an early event in the molecular pathophysiology of the disease (before loss of left ventricular ejection fraction <45%), which associates with increased oxidant production (O and HO). We propose therapies that limit oxidant formation as a possible intervention to restrict DNA damage in ARVC.
致心律失常性右心室心肌病(ARVC)的特征是容易发生危及生命的心律失常和进行性心肌丧失。超过 40%报道的与 ARVC 相关的遗传变异位于编码 PKP2 蛋白(桥粒斑蛋白-2)的 基因中。
我们通过对 ARVC 患者的右心室活检样本进行高分辨率质谱分析、RNA 测序和透射电子显微镜检查,全面描述了 ARVC 的分子特征,这些患者携带 基因突变且左心室射血分数(LVEF)>45%。健康亲属的样本作为对照。这些观察结果促使我们使用多种成像和生化技术在左心室射血分数正常且存在心脏特异性 缺失的小鼠中以及在人诱导多能干细胞衍生的 PKP2 缺陷心肌细胞中进行实验研究。
ARVC 患者的样本表现出核膜完整性丧失、提示 DNA 损伤增加的分子特征以及编码电子传递链蛋白的转录本缺失。心脏特异性缺失 的小鼠也表现出核膜完整性丧失,导致 DNA 损伤和随后的过量活性氧(O 和 HO)产生,在机械应激(异丙肾上腺素或运动)下后者进一步增加。人诱导多能干细胞衍生的 PKP2 缺陷心肌细胞中重现了活性氧产生和 DNA 损伤增加。此外,PKP2 缺陷细胞将 HO 释放到细胞外环境中,以旁分泌方式导致邻近心肌细胞的 DNA 损伤和活性氧产生增加。用 honokiol 治疗可增加 SIRT3(线粒体烟酰胺腺嘌呤二核苷酸依赖性蛋白去乙酰化酶 Sirtuin-3)活性,减少体外和体内的氧化水平和 DNA 损伤,减少右心室游离壁胶原含量,并对右心室功能具有保护作用。
核膜完整性丧失和随后的 DNA 损伤是 ARVC 分子病理学的关键底物。我们显示,电子转录链蛋白的转录下调是疾病分子病理生理学的早期事件(在左心室射血分数<45%丧失之前),与活性氧产生增加(O 和 HO)相关。我们提出了限制活性氧形成的治疗方法,作为限制 ARVC 中 DNA 损伤的可能干预措施。