Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.
PLoS One. 2012;7(6):e38870. doi: 10.1371/journal.pone.0038870. Epub 2012 Jun 29.
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
生物标志物候选数量通常远远大于临床患者数据点的数量,这促使人们采用合理的候选变量筛选方法。本文的目的是应用这种生物信息学过滤过程,分离少数(<10)个关键相互作用基因及其相关的单核苷酸多态性,这些基因和多态性与辐射反应有关,并最终作为使用临床数据集识别新生物标志物的基础。在步骤 1 中,我们调查了与辐射反应相关的遗传和蛋白质相关性的文献,这些研究涉及细胞、动物和人体的体内和体外研究。在步骤 2 中,我们分析了两个公开的微阵列数据集,并确定了在mRNA 表达对辐射反应中发生变化的基因。结合步骤 1 和步骤 2 的结果,我们确定了 20 个在所有三个来源中都常见的基因。作为最后一步,使用经过精心整理的蛋白质相互作用数据库来生成任何来自步骤 1 和步骤 2 的 20 个基因子集的最具统计学可靠性的蛋白质相互作用网络,从而确定了一个由 7 个输入基因组成的小而紧密相互作用的网络。我们进一步根据网络中基因的位置,使用基于图的评分函数对基因进行重要性排序。由此产生的核心相互作用网络提供了一组可能对辐射反应很重要的有吸引力的基因。