Suppr超能文献

一种用于识别辐射反应生物标志物候选物的生物信息学筛选策略。

A bioinformatics filtering strategy for identifying radiation response biomarker candidates.

机构信息

Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America.

出版信息

PLoS One. 2012;7(6):e38870. doi: 10.1371/journal.pone.0038870. Epub 2012 Jun 29.

Abstract

The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.

摘要

生物标志物候选数量通常远远大于临床患者数据点的数量,这促使人们采用合理的候选变量筛选方法。本文的目的是应用这种生物信息学过滤过程,分离少数(<10)个关键相互作用基因及其相关的单核苷酸多态性,这些基因和多态性与辐射反应有关,并最终作为使用临床数据集识别新生物标志物的基础。在步骤 1 中,我们调查了与辐射反应相关的遗传和蛋白质相关性的文献,这些研究涉及细胞、动物和人体的体内和体外研究。在步骤 2 中,我们分析了两个公开的微阵列数据集,并确定了在mRNA 表达对辐射反应中发生变化的基因。结合步骤 1 和步骤 2 的结果,我们确定了 20 个在所有三个来源中都常见的基因。作为最后一步,使用经过精心整理的蛋白质相互作用数据库来生成任何来自步骤 1 和步骤 2 的 20 个基因子集的最具统计学可靠性的蛋白质相互作用网络,从而确定了一个由 7 个输入基因组成的小而紧密相互作用的网络。我们进一步根据网络中基因的位置,使用基于图的评分函数对基因进行重要性排序。由此产生的核心相互作用网络提供了一组可能对辐射反应很重要的有吸引力的基因。

相似文献

1
A bioinformatics filtering strategy for identifying radiation response biomarker candidates.
PLoS One. 2012;7(6):e38870. doi: 10.1371/journal.pone.0038870. Epub 2012 Jun 29.
2
3
Identifying cancer biomarkers by network-constrained support vector machines.
BMC Syst Biol. 2011 Oct 12;5:161. doi: 10.1186/1752-0509-5-161.
4
Identification of Inflammation-Related Biomarker Pro-ADM for Male Patients With Gout by Comprehensive Analysis.
Front Immunol. 2022 Jan 18;12:798719. doi: 10.3389/fimmu.2021.798719. eCollection 2021.
5
Comprehensive analysis of key genes and microRNAs in radioresistant nasopharyngeal carcinoma.
BMC Med Genomics. 2019 May 28;12(1):73. doi: 10.1186/s12920-019-0507-6.
7
A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data.
J Proteome Res. 2011 Mar 4;10(3):1406-15. doi: 10.1021/pr101226q. Epub 2011 Feb 16.
8
Identification of Potential Genetic Biomarkers and Target Genes of Peri-Implantitis Using Bioinformatics Tools.
Biomed Res Int. 2021 Dec 11;2021:1759214. doi: 10.1155/2021/1759214. eCollection 2021.

引用本文的文献

3
Radiogenomics and radiotherapy response modeling.
Phys Med Biol. 2017 Aug 1;62(16):R179-R206. doi: 10.1088/1361-6560/aa7c55.
4
Transcriptional Responses to Ultraviolet and Ionizing Radiation: An Approach Based on Graph Curvature.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2016 Dec;2016:1302-1306. doi: 10.1109/BIBM.2016.7822706. Epub 2017 Jan 19.
6
A literature mining-based approach for identification of cellular pathways associated with chemoresistance in cancer.
Brief Bioinform. 2016 May;17(3):468-78. doi: 10.1093/bib/bbv053. Epub 2015 Jul 27.
7
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm.
BMC Bioinformatics. 2014;15 Suppl 7(Suppl 7):S5. doi: 10.1186/1471-2105-15-S7-S5. Epub 2014 May 28.

本文引用的文献

1
Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients.
Int J Radiat Oncol Biol Phys. 2011 Jun 1;80(2):549-57. doi: 10.1016/j.ijrobp.2010.12.061. Epub 2011 Mar 21.
2
A bioinformatics approach for biomarker identification in radiation-induced lung inflammation from limited proteomics data.
J Proteome Res. 2011 Mar 4;10(3):1406-15. doi: 10.1021/pr101226q. Epub 2011 Feb 16.
3
Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response.
Int J Radiat Biol. 2011 Feb;87(2):115-29. doi: 10.3109/09553002.2010.519424. Epub 2010 Nov 10.
8
Enhanced radiosensitivity of EC109 cells by inhibition of HDAC1 expression.
Med Oncol. 2012 Mar;29(1):340-8. doi: 10.1007/s12032-010-9559-3. Epub 2010 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验