Suppr超能文献

时间和氟化物控制次生代谢调节细胞有机氟生物合成。

Temporal and fluoride control of secondary metabolism regulates cellular organofluorine biosynthesis.

机构信息

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.

出版信息

ACS Chem Biol. 2012 Sep 21;7(9):1576-85. doi: 10.1021/cb3002057. Epub 2012 Jul 6.

Abstract

Elucidating mechanisms of natural organofluorine biosynthesis is essential for a basic understanding of fluorine biochemistry in living systems as well as for expanding biological methods for fluorine incorporation into small molecules of interest. To meet this goal we have combined massively parallel sequencing technologies, genetic knockout, and in vitro biochemical approaches to investigate the fluoride response of the only known genetic host of an organofluorine-producing pathway, Streptomyces cattleya. Interestingly, we have discovered that the major mode of S. cattleya's resistance to the fluorinated toxin it produces, fluoroacetate, may be due to temporal control of production rather than the ability of the host's metabolic machinery to discriminate between fluorinated and non-fluorinated molecules. Indeed, neither the acetate kinase/phosphotransacetylase acetate assimilation pathway nor the TCA cycle enzymes (citrate synthase and aconitase) exclude fluorinated substrates based on in vitro biochemical characterization. Furthermore, disruption of the fluoroacetate resistance gene encoding a fluoroacetyl-CoA thioesterase (FlK) does not appear to lead to an observable growth defect related to organofluorine production. By showing that a switch in central metabolism can mediate and control molecular fluorine incorporation, our findings reveal a new potential strategy toward diversifying simple fluorinated building blocks into more complex products.

摘要

阐明天然有机氟生物合成的机制对于深入了解生命系统中的氟生物化学以及拓展将氟原子掺入感兴趣的小分子的生物方法至关重要。为了实现这一目标,我们结合了大规模平行测序技术、基因敲除和体外生化方法,研究了唯一已知的有机氟生产途径的遗传宿主——链霉菌卡特利雅(Streptomyces cattleya)对氟化物的反应。有趣的是,我们发现链霉菌卡特利雅对其产生的氟化物毒素——氟乙酸盐的主要抗性模式可能是由于其生产的时间控制,而不是宿主代谢机制对氟化物和非氟化物分子的区分能力。事实上,无论是基于体外生化特性的乙酰激酶/磷酸转乙酰酶乙酰化途径还是 TCA 循环酶(柠檬酸合酶和 aconitase)都不会排除氟化物底物。此外,破坏编码氟乙酰辅酶 A 硫酯酶(FlK)的氟乙酸盐抗性基因似乎不会导致与有机氟生产相关的可观察到的生长缺陷。通过表明中心代谢的转变可以介导和控制分子氟的掺入,我们的发现揭示了一种将简单的氟化砌块多样化成更复杂产物的新的潜在策略。

相似文献

7
10
Engineered Fluorine Metabolism and Fluoropolymer Production in Living Cells.在活细胞中构建氟代谢和氟聚合物的生产。
Angew Chem Int Ed Engl. 2017 Oct 23;56(44):13637-13640. doi: 10.1002/anie.201706696. Epub 2017 Sep 26.

引用本文的文献

4
Fluorothreonyl-tRNA deacylase prevents mistranslation in the organofluorine producer .氟苏氨酸 tRNA 脱氨酶可防止有机氟生产菌中的错译。
Proc Natl Acad Sci U S A. 2017 Nov 7;114(45):11920-11925. doi: 10.1073/pnas.1711482114. Epub 2017 Oct 23.
6
Synthetic biology approaches to fluorinated polyketides.合成生物学方法用于氟化聚酮化合物。
Acc Chem Res. 2015 Mar 17;48(3):584-92. doi: 10.1021/ar500415c. Epub 2015 Feb 26.

本文引用的文献

1
Widespread genetic switches and toxicity resistance proteins for fluoride.氟化物的广泛遗传开关和毒性抗性蛋白。
Science. 2012 Jan 13;335(6065):233-235. doi: 10.1126/science.1215063. Epub 2011 Dec 22.
3
Differential expression analysis for sequence count data.差异表达分析序列计数数据。
Genome Biol. 2010;11(10):R106. doi: 10.1186/gb-2010-11-10-r106. Epub 2010 Oct 27.
7
Fast and accurate short read alignment with Burrows-Wheeler transform.使用Burrows-Wheeler变换进行快速准确的短读比对。
Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18.
10
SOAP: short oligonucleotide alignment program.SOAP:短寡核苷酸比对程序。
Bioinformatics. 2008 Mar 1;24(5):713-4. doi: 10.1093/bioinformatics/btn025. Epub 2008 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验