Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Department of Biochemistry, Biophysics & Molecular Biology and Biotechnology Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
Nat Commun. 2024 May 30;15(1):4593. doi: 10.1038/s41467-024-49018-1.
Fluorinated organic chemicals, such as per- and polyfluorinated alkyl substances (PFAS) and fluorinated pesticides, are both broadly useful and unusually long-lived. To combat problems related to the accumulation of these compounds, microbial PFAS and organofluorine degradation and biosynthesis of less-fluorinated replacement chemicals are under intense study. Both efforts are undermined by the substantial toxicity of fluoride, an anion that powerfully inhibits metabolism. Microorganisms have contended with environmental mineral fluoride over evolutionary time, evolving a suite of detoxification mechanisms. In this perspective, we synthesize emerging ideas on microbial defluorination/fluorination and fluoride resistance mechanisms and identify best approaches for bioengineering new approaches for degrading and making organofluorine compounds.
含氟有机化学品,如全氟和多氟烷基物质(PFAS)和含氟农药,既用途广泛又非常稳定。为了解决与这些化合物积累相关的问题,人们正在深入研究微生物 PFAS 和有机氟的降解以及少氟化替代化学品的生物合成。这两项工作都受到氟化物(一种强烈抑制代谢的阴离子)的毒性的阻碍。微生物在进化过程中一直在与环境中的矿物氟化物作斗争,进化出了一系列解毒机制。在这个观点中,我们综合了关于微生物脱氟/氟化和氟化物抗性机制的新观点,并确定了用于生物工程降解和制造有机氟化合物的新方法的最佳方法。