IEEE Trans Cybern. 2013 Feb;43(1):180-91. doi: 10.1109/TSMCB.2012.2202901. Epub 2012 Jul 3.
Isomap is a well-known nonlinear dimensionality reduction (DR) method, aiming at preserving geodesic distances of all similarity pairs for delivering highly nonlinear manifolds. Isomap is efficient in visualizing synthetic data sets, but it usually delivers unsatisfactory results in benchmark cases. This paper incorporates the pairwise constraints into Isomap and proposes a marginal Isomap (M-Isomap) for manifold learning. The pairwise Cannot-Link and Must-Link constraints are used to specify the types of neighborhoods. M-Isomap computes the shortest path distances over constrained neighborhood graphs and guides the nonlinear DR through separating the interclass neighbors. As a result, large margins between both interand intraclass clusters are delivered and enhanced compactness of intracluster points is achieved at the same time. The validity of M-Isomap is examined by extensive simulations over synthetic, University of California, Irvine, and benchmark real Olivetti Research Library, YALE, and CMU Pose, Illumination, and Expression databases. The data visualization and clustering power of M-Isomap are compared with those of six related DR methods. The visualization results show that M-Isomap is able to deliver more separate clusters. Clustering evaluations also demonstrate that M-Isomap delivers comparable or even better results than some state-of-the-art DR algorithms.
Isomap 是一种著名的非线性降维(DR)方法,旨在保留所有相似对的测地线距离,以呈现高度非线性流形。Isomap 在可视化合成数据集方面非常有效,但在基准案例中通常会得到不理想的结果。本文将成对约束纳入 Isomap 中,并提出了一种边际 Isomap(M-Isomap)用于流形学习。成对的不可链接和必须链接约束用于指定邻域类型。M-Isomap 通过分离类间邻居来计算约束邻域图上的最短路径距离,并指导非线性降维。因此,同时实现了类间和类内簇之间的大间隔以及类内点的紧凑性。通过在合成、加利福尼亚大学欧文分校和基准真实 Olivetti 研究图书馆、耶鲁大学和 CMU 姿势、光照和表情数据库上进行广泛的模拟来检验 M-Isomap 的有效性。将 M-Isomap 的数据可视化和聚类能力与其他六种相关的 DR 方法进行了比较。可视化结果表明,M-Isomap 能够提供更分离的簇。聚类评估也表明,M-Isomap 提供的结果与一些最先进的 DR 算法相当甚至更好。