Zhuge Wenzhang, Hou Chenping, Jiao Yuanyuan, Yue Jia, Tao Hong, Yi Dongyun
Department of Mathematics and System Science, National University of Defense Technology, Changsha, Hunan, China.
The College of Nine, National University of Defense Technology, Changsha, Hunan, China.
PLoS One. 2017 May 23;12(5):e0176769. doi: 10.1371/journal.pone.0176769. eCollection 2017.
In many computer vision and machine learning applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is a powerful technology to find the underlying subspaces and cluster data points correctly. However, traditional subspace clustering methods can only be applied on data from one source, and how to extend these methods and enable the extensions to combine information from various data sources has become a hot area of research. Previous multi-view subspace methods aim to learn multiple subspace representation matrices simultaneously and these learning task for different views are treated equally. After obtaining representation matrices, they stack up the learned representation matrices as the common underlying subspace structure. However, for many problems, the importance of sources and the importance of features in one source both can be varied, which makes the previous approaches ineffective. In this paper, we propose a novel method called Robust Auto-weighted Multi-view Subspace Clustering (RAMSC). In our method, the weight for both the sources and features can be learned automatically via utilizing a novel trick and introducing a sparse norm. More importantly, the objective of our method is a common representation matrix which directly reflects the common underlying subspace structure. A new efficient algorithm is derived to solve the formulated objective with rigorous theoretical proof on its convergency. Extensive experimental results on five benchmark multi-view datasets well demonstrate that the proposed method consistently outperforms the state-of-the-art methods.
在许多计算机视觉和机器学习应用中,数据集分布在某些低维子空间上。子空间聚类是一种强大的技术,用于找到潜在的子空间并正确地对数据点进行聚类。然而,传统的子空间聚类方法只能应用于来自单一源的数据,如何扩展这些方法并使扩展后的方法能够整合来自各种数据源的信息已成为一个热门研究领域。先前的多视图子空间方法旨在同时学习多个子空间表示矩阵,并且对不同视图的这些学习任务一视同仁。在获得表示矩阵后,他们将学习到的表示矩阵堆叠起来作为共同的潜在子空间结构。然而,对于许多问题,数据源的重要性以及一个数据源中特征的重要性都可能不同,这使得先前的方法无效。在本文中,我们提出了一种名为鲁棒自动加权多视图子空间聚类(RAMSC)的新方法。在我们的方法中,可以通过利用一种新颖的技巧并引入稀疏范数来自动学习数据源和特征的权重。更重要的是,我们方法的目标是一个直接反映共同潜在子空间结构的共同表示矩阵。我们推导了一种新的高效算法来解决所制定的目标,并对其收敛性进行了严格的理论证明。在五个基准多视图数据集上的大量实验结果充分表明,所提出的方法始终优于现有方法。