Suppr超能文献

基于李群网络约束的少样本多阶段元学习

Multi-Stage Meta-Learning for Few-Shot with Lie Group Network Constraint.

作者信息

Dong Fang, Liu Li, Li Fanzhang

机构信息

School of Computer Science and Technology, Soochow University, Suzhou 215006, China.

出版信息

Entropy (Basel). 2020 Jun 5;22(6):625. doi: 10.3390/e22060625.

Abstract

Deep learning has achieved many successes in different fields but can sometimes encounter an overfitting problem when there are insufficient amounts of labeled samples. In solving the problem of learning with limited training data, meta-learning is proposed to remember some common knowledge by leveraging a large number of similar few-shot tasks and learning how to adapt a base-learner to a new task for which only a few labeled samples are available. Current meta-learning approaches typically uses Shallow Neural Networks (SNNs) to avoid overfitting, thus wasting much information in adapting to a new task. Moreover, the Euclidean space-based gradient descent in existing meta-learning approaches always lead to an inaccurate update of meta-learners, which poses a challenge to meta-learning models in extracting features from samples and updating network parameters. In this paper, we propose a novel meta-learning model called Multi-Stage Meta-Learning (MSML) to post the bottleneck during the adapting process. The proposed method constrains a network to Stiefel manifold so that a meta-learner could perform a more stable gradient descent in limited steps so that the adapting process can be accelerated. An experiment on the mini-ImageNet demonstrates that the proposed method reached a better accuracy under 5-way 1-shot and 5-way 5-shot conditions.

摘要

深度学习在不同领域取得了诸多成功,但在标记样本数量不足时有时会遇到过拟合问题。在解决有限训练数据的学习问题时,元学习被提出来,通过利用大量相似的少样本任务来记住一些常识,并学习如何使基础学习器适应仅有少量标记样本的新任务。当前的元学习方法通常使用浅层神经网络(SNN)来避免过拟合,从而在适应新任务时浪费了大量信息。此外,现有元学习方法中基于欧几里得空间的梯度下降总是导致元学习器的更新不准确,这对元学习模型从样本中提取特征和更新网络参数构成了挑战。在本文中,我们提出了一种名为多阶段元学习(MSML)的新型元学习模型,以突破适应过程中的瓶颈。所提出的方法将网络约束到Stiefel流形上,以便元学习器能够在有限步骤内执行更稳定的梯度下降,从而加速适应过程。在mini-ImageNet上的实验表明,所提出的方法在5分类1样本和5分类5样本条件下达到了更好的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b11/7517158/601080975cbd/entropy-22-00625-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验