Suppr超能文献

在二选一强制选择任务中估计判别性能:MATLAB 和 R 的例程。

Estimating discrimination performance in two-alternative forced choice tasks: routines for MATLAB and R.

机构信息

Department of Psychology, University of Tübingen, Schleichstrasse 4, 72076, Tübingen, Germany.

出版信息

Behav Res Methods. 2012 Dec;44(4):1157-74. doi: 10.3758/s13428-012-0207-z.

Abstract

Ulrich and Vorberg (Attention, Perception, & Psychophysics 71: 1219-1227, 2009) introduced a novel approach for estimating discrimination performance in two-alternative forced choice (2AFC) tasks. This approach avoids pitfalls that are inherent when the order of the standard and the comparison is neglected in estimating the difference limen (DL), as in traditional approaches. The present article provides MATLAB and R routines that implement this novel procedure for estimating DLs. These routines also allow to account for processing failures such as lapses or finger errors and can be applied to experimental designs in which the standard and comparison differ only along the task-relevant dimension, as well as to designs in which the stimuli differ in more than one dimension. In addition, Monte Carlo simulations were conducted to check the quality of our routines.

摘要

乌尔里希和沃尔伯格(Attention, Perception, & Psychophysics 71: 1219-1227, 2009)提出了一种新的方法来估计二选一强制选择(2AFC)任务中的辨别性能。这种方法避免了当在估计传统方法中忽略标准和比较的顺序时,在估计差异阈限(DL)时所固有的陷阱。本文提供了 MATLAB 和 R 例程,这些例程实现了这种新的 DL 估计程序。这些例程还允许考虑处理失败,如失误或手指错误,并可应用于标准和比较仅在任务相关维度上有所不同的实验设计,以及刺激在多个维度上有所不同的设计。此外,还进行了蒙特卡罗模拟以检查我们例程的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验