Inserm U798, Laboratoire de Neurogénétique Moléculaire, Université d'Evry-Val d'Essonne et Paris XI, Evry, 91057, France.
Dis Model Mech. 2013 Jan;6(1):72-83. doi: 10.1242/dmm.008946. Epub 2012 Jul 5.
Mutations in SPG4, encoding the microtubule-severing protein spastin, are responsible for the most frequent form of hereditary spastic paraplegia (HSP), a heterogeneous group of genetic diseases characterized by degeneration of the corticospinal tracts. We previously reported that mice harboring a deletion in Spg4, generating a premature stop codon, develop progressive axonal degeneration characterized by focal axonal swellings associated with impaired axonal transport. To further characterize the molecular and cellular mechanisms underlying this mutant phenotype, we have assessed microtubule dynamics and axonal transport in primary cultures of cortical neurons from spastin-mutant mice. We show an early and marked impairment of microtubule dynamics all along the axons of spastin-deficient cortical neurons, which is likely to be responsible for the occurrence of axonal swellings and cargo stalling. Our analysis also reveals that a modulation of microtubule dynamics by microtubule-targeting drugs rescues the mutant phenotype of cortical neurons. Together, these results contribute to a better understanding of the pathogenesis of SPG4-linked HSP and ascertain the influence of microtubule-targeted drugs on the early axonal phenotype in a mouse model of the disease.
SPG4 基因突变导致微管切割蛋白 spastin 缺失,是最常见的遗传性痉挛性截瘫(HSP)的致病原因,HSP 是一组具有遗传异质性的疾病,其特征是皮质脊髓束变性。我们之前的研究报道,缺失 Spg4 的小鼠会产生一个提前终止密码子,导致进行性轴突变性,表现为局灶性轴突肿胀,伴有轴突运输受损。为了进一步阐明这种突变表型的分子和细胞机制,我们评估了源自 spastin 突变小鼠的皮质神经元原代培养物中的微管动力学和轴突运输。结果显示,spastin 缺陷的皮质神经元的轴突中微管动力学的早期和明显的损伤,这可能是导致轴突肿胀和货物停滞的原因。我们的分析还表明,微管靶向药物对微管动力学的调节可以挽救皮质神经元的突变表型。综上所述,这些结果有助于更好地理解 SPG4 相关性 HSP 的发病机制,并确定微管靶向药物对疾病小鼠早期轴突表型的影响。