Suppr超能文献

BMI 对基于加速度计的青少年能量消耗预测的影响。

Effect of BMI on prediction of accelerometry-based energy expenditure in youth.

机构信息

Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-2260, USA.

出版信息

Med Sci Sports Exerc. 2012 Dec;44(12):2428-35. doi: 10.1249/MSS.0b013e318267b8f1.

Abstract

PURPOSE

The objective of this study is to determine the effect of body mass index (BMI) on level of agreement between six previously established prediction equations for three commonly used accelerometers to predict summary measures of energy expenditure (EE) in youth.

METHODS

One hundred and thirty-one youth between the ages of 10-17 yr and BMI from 15 to 44 kg·m were outfitted with hip-worn ActiGraph GT1M (Pensacola, FL), Actical (MiniMiter/Respironics, Bend, OR), and RT3 (StayHealthy, Monrovia, CA) accelerometers and spent approximately 24 h in a whole-room indirect calorimeter while performing structured and self-selected activities. Five commonly used regression and one propriety equations for each device were used to predict the minute-to-minute EE (normalized to METs), daily physical activity level (PAL), and time spent in sedentary, light, moderate, and vigorous physical activity intensity categories. The calculated values were compared with criterion measurements obtained from the room calorimeter.

RESULTS

All predictive equations, except RT3, significantly over- or underpredicted daily PAL (P < 0.001), with large discrepancies observed in the estimate of sedentary and light activity. Discrepancies between actual and estimated PAL ranged from 0.05 to 0.68. In addition, BMI represented a modifier for two ActiGraph predictive equations (AG1 and AG2), affecting the accuracy of physical activity-related EE predictions.

CONCLUSION

ActiGraph (AG3) and the RT3 closely predicted overall PAL (within 4.2% and 6.8%, respectively) as a group. When adjusting for age, sex, and ethnicity, Actical (AC1 and AC2) and ActiGraph (AG3) were not influenced by BMI. However, a gap between some hip-worn accelerometer predictive and regression equations was demonstrated compared with both criterion measurement and each other, which poses a potential difficulty for interstudy (e.g., different accelerometers) and intrastudy (e.g., BMI and adiposity) comparisons.

摘要

目的

本研究旨在确定体重指数(BMI)对先前建立的 6 种预测方程在预测青少年常用的 3 种加速度计的综合能量消耗(EE)水平方面的一致性的影响。

方法

131 名年龄在 10-17 岁之间、BMI 在 15-44 kg·m 之间的青少年佩戴 Hip-worn ActiGraph GT1M(彭萨科拉,FL)、Actical(MiniMiter/Respironics,Bend,OR)和 RT3(StayHealthy,Monrovia,CA)加速度计,并在整个房间间接热量计中进行了大约 24 小时的结构化和自我选择活动。使用五种常用的回归方程和每种设备的一种专用方程来预测每分钟 EE(归一化为 METs)、日常身体活动水平(PAL)以及久坐、轻度、中度和剧烈身体活动强度类别的时间。将计算值与从房间热量计获得的标准测量值进行比较。

结果

除 RT3 外,所有预测方程均显著高估或低估了日常 PAL(P < 0.001),且在久坐和轻度活动的估计中存在较大差异。实际和估计的 PAL 之间的差异范围为 0.05 至 0.68。此外,BMI 是两种 ActiGraph 预测方程(AG1 和 AG2)的修饰因子,影响与体力活动相关的 EE 预测的准确性。

结论

ActiGraph(AG3)和 RT3 作为一个整体,能够很好地预测总体 PAL(分别在 4.2%和 6.8%以内)。当调整年龄、性别和种族因素时,Actical(AC1 和 AC2)和 ActiGraph(AG3)不受 BMI 的影响。然而,与标准测量值和彼此相比,一些腰部佩戴的加速度计预测和回归方程之间存在差距,这给研究之间(例如,不同的加速度计)和研究内(例如,BMI 和肥胖)的比较带来了潜在的困难。

相似文献

1
Effect of BMI on prediction of accelerometry-based energy expenditure in youth.
Med Sci Sports Exerc. 2012 Dec;44(12):2428-35. doi: 10.1249/MSS.0b013e318267b8f1.
2
Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers.
Obesity (Silver Spring). 2008 Aug;16(8):1946-52. doi: 10.1038/oby.2008.279. Epub 2008 May 29.
4
A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
Eur J Appl Physiol. 2011 Feb;111(2):187-201. doi: 10.1007/s00421-010-1639-8. Epub 2010 Sep 15.
5
Estimating energy expenditure using accelerometers.
Eur J Appl Physiol. 2006 Dec;98(6):601-12. doi: 10.1007/s00421-006-0307-5. Epub 2006 Oct 21.
6
Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
J Appl Physiol (1985). 2010 Feb;108(2):314-27. doi: 10.1152/japplphysiol.00374.2009. Epub 2009 Dec 3.
7
Validation of the ActiGraph two-regression model for predicting energy expenditure.
Med Sci Sports Exerc. 2010 Sep;42(9):1785-92. doi: 10.1249/MSS.0b013e3181d5a984.
8
Relative validity of 3 accelerometer models for estimating energy expenditure during light activity.
J Phys Act Health. 2014 Mar;11(3):638-47. doi: 10.1123/jpah.2011-0167. Epub 2013 Feb 8.
10
Predictive validity and classification accuracy of ActiGraph energy expenditure equations and cut-points in young children.
PLoS One. 2013 Nov 11;8(11):e79124. doi: 10.1371/journal.pone.0079124. eCollection 2013.

引用本文的文献

1
Clustering Functional Data With Measurement Errors: A Simulation-Based Approach.
Stat Med. 2024 Dec 10;43(28):5344-5352. doi: 10.1002/sim.10238. Epub 2024 Oct 15.
2
PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION WITH MEASUREMENT ERRORS.
Stat Sin. 2023 Jul;33(3):2257-2280. doi: 10.5705/ss.202021.0246.
3
Estimation of sparse functional quantile regression with measurement error: a SIMEX approach.
Biostatistics. 2022 Oct 14;23(4):1218-1241. doi: 10.1093/biostatistics/kxac017.
4
Modeling Energy Expenditure Estimation in Occupational Context by Actigraphy: A Multi Regression Mixed-Effects Model.
Int J Environ Res Public Health. 2021 Oct 3;18(19):10419. doi: 10.3390/ijerph181910419.
5
Rates of Obesity and Obesogenic Behaviors of Rural Appalachian Adolescents: How Do They Compare to Other Adolescents or Recommendations?
J Phys Act Health. 2018 Nov 1;15(11):874-881. doi: 10.1123/jpah.2017-0602. Epub 2018 Oct 13.

本文引用的文献

1
Calibration and validation of wearable monitors.
Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S32-8. doi: 10.1249/MSS.0b013e3182399cf7.
2
Physical activity levels of high school students --- United States, 2010.
MMWR Morb Mortal Wkly Rep. 2011 Jun 17;60(23):773-7.
3
Validation and comparison of ActiGraph activity monitors.
J Sci Med Sport. 2011 Sep;14(5):411-6. doi: 10.1016/j.jsams.2011.04.003. Epub 2011 May 25.
4
How children move: activity pattern characteristics in lean and obese chinese children.
J Obes. 2011;2011:679328. doi: 10.1155/2011/679328. Epub 2010 Dec 28.
5
Comparison of accelerometer cut points for predicting activity intensity in youth.
Med Sci Sports Exerc. 2011 Jul;43(7):1360-8. doi: 10.1249/MSS.0b013e318206476e.
6
A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations.
Eur J Appl Physiol. 2011 Feb;111(2):187-201. doi: 10.1007/s00421-010-1639-8. Epub 2010 Sep 15.
7
Correlates of physical activity in black, Hispanic, and white middle school girls.
J Phys Act Health. 2010 Mar;7(2):184-93. doi: 10.1123/jpah.7.2.184.
9
Validation of the ActiGraph two-regression model for predicting energy expenditure.
Med Sci Sports Exerc. 2010 Sep;42(9):1785-92. doi: 10.1249/MSS.0b013e3181d5a984.
10
Algorithm for transient response of whole body indirect calorimeter: deconvolution with a regularization parameter.
J Appl Physiol (1985). 2009 Feb;106(2):640-50. doi: 10.1152/japplphysiol.90718.2008. Epub 2008 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验