School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore.
Small. 2012 Oct 22;8(20):3201-8. doi: 10.1002/smll.201200924. Epub 2012 Jul 10.
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved.
石墨烯纳米片和金属纳米粒子(NPs)已被用作组装成具有在电子器件中表现出优异性能的宏观混合结构的纳米构建块。然而,在大多数石墨烯和金属 NP 混合结构中,石墨烯片和金属 NPs(例如 AuNPs)无法控制反应过程、构建块的取向和纳米级别的组织。在这里,提出了一种用于构建多层还原氧化石墨烯(RGO)/AuNP 薄膜和横向微图案的电泳层层组装方法。这种组装方法可以轻松控制薄膜垂直方向上的构建块的纳米结构,包括 RGO 和 AuNP 层的数量和厚度,以及所得多层结构的横向取向。多层 RGO/AuNP 混合纳米结构的电导率由于 AuNPs 在上下 RGO 层之间的平面外方向上的桥接效应而得到显著提高。结果清楚地表明了电泳堆积在制造基于石墨烯的交替多层薄膜和图案中的潜力。最后,基于多层 RGO/AuNP 混合薄膜的柔性超级电容器被制造,并且实现了高能量和功率密度等优异性能。