Interdisciplinary School of Green Energy and School of NanoBio and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea.
ACS Nano. 2010 Jul 27;4(7):3861-8. doi: 10.1021/nn100897g.
We developed a simple, versatile method of integrating hybrid thin films of reduced graphene oxide (RGO) nanosheets with multiwalled carbon nanotubes (MWNTs) via LbL assembly. This approach involves the electrostatic interactions of two oppositely charged suspensions of the RGO nanosheet with MWNTs. This method affords a hybrid multilayer of graphenes with excellent control over the optical and electrical properties. Moreover, the hybrid multilayer exhibits a significant increase of electronic conductivity after the thermal treatment, producing transparent and conducting thin films possessing a sheet resistance of 8 kOmega/sq with a transmittance of 81%. By taking advantage of the conducting network structure of MWNTs, which provides an additional flexibility and mechanical stability of RGO nanosheets, we demonstrate the potential application of hybrid graphene multilayer as a highly flexible and transparent electrode. Because of the highly versatile and tunable properties of LbL-assembled thin films, we anticipate that the general concept presented here offers a unique potential platform for integrating active carbon nanomaterials for advanced electronic, energy, and sensor applications.
我们开发了一种简单、通用的方法,通过层层自组装将还原氧化石墨烯(RGO)纳米片与多壁碳纳米管(MWNTs)的混合薄膜集成在一起。该方法涉及到 RGO 纳米片和 MWNTs 的两种带相反电荷的悬浮液之间的静电相互作用。这种方法提供了具有优异光学和电学性能的石墨烯混合多层结构。此外,混合多层结构在热处理后表现出电子电导率的显著增加,产生透明导电薄膜,其方阻为 8 kΩ/sq,透光率为 81%。通过利用 MWNTs 的导电网络结构,为 RGO 纳米片提供了额外的柔韧性和机械稳定性,我们展示了混合石墨烯多层结构作为一种高柔韧性透明电极的潜在应用。由于层层组装薄膜具有高度通用和可调的特性,我们预计这里提出的一般概念为集成活性碳纳米材料用于先进电子、能源和传感器应用提供了一个独特的潜在平台。