Chemistry Institute, University of Campinas, Campinas, SP, Brazil.
Proteomics. 2012 Aug;12(17):2746-52. doi: 10.1002/pmic.201200040.
Chemical cross-linking is an attractive technique for the study of the structure of protein complexes due to its low sample consumption and short analysis time. Furthermore, distance constraints obtained from the identification of cross-linked peptides by MS can be used to construct and validate protein models. If a sufficient number of distance constraints are obtained, then determining the secondary structure of a protein can allow inference of the protein's fold. In this work, we show how the distance constraints obtained from cross-linking experiments can identify secondary structures within the protein sequence. Molecular modeling of alpha helices and beta sheets reveals that each secondary structure presents different cross-linking possibilities due to the topological distances between reactive residues. Cross-linking experiments performed with amine reactive cross-linkers with model alpha helix containing proteins corroborated the molecular modeling predictions. The cross-linking patterns established here can be extended to other cross-linkers with known lengths for the determination of secondary structures in proteins.
化学交联是研究蛋白质复合物结构的一种有吸引力的技术,因为它的样品消耗低,分析时间短。此外,通过 MS 鉴定交联肽获得的距离约束可用于构建和验证蛋白质模型。如果获得足够数量的距离约束,则确定蛋白质的二级结构可以推断蛋白质的折叠。在这项工作中,我们展示了如何从交联实验中获得的距离约束来识别蛋白质序列中的二级结构。对α螺旋和β片层的分子建模表明,由于反应性残基之间的拓扑距离,每种二级结构都呈现出不同的交联可能性。用含有模型α螺旋的胺反应性交联剂进行交联实验证实了分子建模的预测。这里建立的交联模式可以扩展到其他具有已知长度的交联剂,以确定蛋白质中的二级结构。