Department of Genome Sciences, University of Washington, Seattle, WA 98105.
Department of Bioengineering, University of Washington, Seattle, WA 98105.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1732-1737. doi: 10.1073/pnas.1617220114. Epub 2017 Jan 27.
Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.
线粒体蛋白相互作用和复合物促进线粒体功能。这些复合物的范围从简单的二聚体到由氧化磷酸化复合物 I、III 和 IV 组成的呼吸体超级复合物。为了提高对线粒体功能的理解,我们使用化学交联质谱法从整个呼吸的鼠线粒体中鉴定出 327 种线粒体蛋白中的 2427 对交联肽对。在电子传递链膜复合物、ATP 合酶以及线粒体接触位点和嵴组织系统 (MICOS) 复合物中的蛋白质中观察到原位相互作用。交联位点与经验蛋白质结构非常吻合,并为蛋白质对接的计算提供了互补的约束条件。这些数据为复合物 I-III 呼吸体的组装提供了直接的物理证据,并能够预测复合物的原位界面区域。最后,我们建立了一个数据库和工具来利用我们观察到的交联相互作用作为分子探针,从而可以定量测定构象依赖性蛋白质界面和动态蛋白质复合物组装。