Suppr超能文献

通过化学交联质谱法阐明线粒体蛋白质相互作用组。

Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry.

机构信息

Department of Genome Sciences, University of Washington, Seattle, WA 98105.

Department of Bioengineering, University of Washington, Seattle, WA 98105.

出版信息

Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1732-1737. doi: 10.1073/pnas.1617220114. Epub 2017 Jan 27.

Abstract

Mitochondrial protein interactions and complexes facilitate mitochondrial function. These complexes range from simple dimers to the respirasome supercomplex consisting of oxidative phosphorylation complexes I, III, and IV. To improve understanding of mitochondrial function, we used chemical cross-linking mass spectrometry to identify 2,427 cross-linked peptide pairs from 327 mitochondrial proteins in whole, respiring murine mitochondria. In situ interactions were observed in proteins throughout the electron transport chain membrane complexes, ATP synthase, and the mitochondrial contact site and cristae organizing system (MICOS) complex. Cross-linked sites showed excellent agreement with empirical protein structures and delivered complementary constraints for in silico protein docking. These data established direct physical evidence of the assembly of the complex I-III respirasome and enabled prediction of in situ interfacial regions of the complexes. Finally, we established a database and tools to harness the cross-linked interactions we observed as molecular probes, allowing quantification of conformation-dependent protein interfaces and dynamic protein complex assembly.

摘要

线粒体蛋白相互作用和复合物促进线粒体功能。这些复合物的范围从简单的二聚体到由氧化磷酸化复合物 I、III 和 IV 组成的呼吸体超级复合物。为了提高对线粒体功能的理解,我们使用化学交联质谱法从整个呼吸的鼠线粒体中鉴定出 327 种线粒体蛋白中的 2427 对交联肽对。在电子传递链膜复合物、ATP 合酶以及线粒体接触位点和嵴组织系统 (MICOS) 复合物中的蛋白质中观察到原位相互作用。交联位点与经验蛋白质结构非常吻合,并为蛋白质对接的计算提供了互补的约束条件。这些数据为复合物 I-III 呼吸体的组装提供了直接的物理证据,并能够预测复合物的原位界面区域。最后,我们建立了一个数据库和工具来利用我们观察到的交联相互作用作为分子探针,从而可以定量测定构象依赖性蛋白质界面和动态蛋白质复合物组装。

相似文献

1
Mitochondrial protein interactome elucidated by chemical cross-linking mass spectrometry.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1732-1737. doi: 10.1073/pnas.1617220114. Epub 2017 Jan 27.
2
Clarifying the supercomplex: the higher-order organization of the mitochondrial electron transport chain.
Nat Struct Mol Biol. 2017 Oct 5;24(10):800-808. doi: 10.1038/nsmb.3460.
3
Targeted Analysis of Mitochondrial Protein Conformations and Interactions by Endogenous ROS-Triggered Cross-Linker Release.
Adv Sci (Weinh). 2024 Dec;11(48):e2408462. doi: 10.1002/advs.202408462. Epub 2024 Oct 30.
4
A Cross-linking Mass Spectrometry Approach Defines Protein Interactions in Yeast Mitochondria.
Mol Cell Proteomics. 2020 Jul;19(7):1161-1178. doi: 10.1074/mcp.RA120.002028. Epub 2020 Apr 24.
5
In Situ Structural Restraints from Cross-Linking Mass Spectrometry in Human Mitochondria.
J Proteome Res. 2020 Jan 3;19(1):327-336. doi: 10.1021/acs.jproteome.9b00541. Epub 2019 Dec 19.
6
Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation.
Biochim Biophys Acta. 2014 Apr;1837(4):418-26. doi: 10.1016/j.bbabio.2013.10.004. Epub 2013 Oct 30.
7
Sealing the mitochondrial respirasome.
Mol Cell Biol. 2012 Jul;32(14):2647-52. doi: 10.1128/MCB.00573-12. Epub 2012 May 14.
8
The interactome of intact mitochondria by cross-linking mass spectrometry provides evidence for coexisting respiratory supercomplexes.
Mol Cell Proteomics. 2018 Feb;17(2):216-232. doi: 10.1074/mcp.RA117.000470. Epub 2017 Dec 8.
9
Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria.
J Bioenerg Biomembr. 2008 Oct;40(5):411-7. doi: 10.1007/s10863-008-9168-4. Epub 2008 Oct 7.
10
Mitochondrial Respiratory Chain Complexes.
Subcell Biochem. 2018;87:167-227. doi: 10.1007/978-981-10-7757-9_7.

引用本文的文献

1
Developing a new cleavable crosslinker reagent for in-cell crosslinking.
Commun Chem. 2025 Jun 23;8(1):191. doi: 10.1038/s42004-025-01568-1.
3
Molecular machineries shaping the mitochondrial inner membrane.
Nat Rev Mol Cell Biol. 2025 May 14. doi: 10.1038/s41580-025-00854-z.
4
Origin and evolution of mitochondrial inner membrane composition.
J Cell Sci. 2025 May 1;138(9). doi: 10.1242/jcs.263780. Epub 2025 Apr 23.
5
In situ architecture of the human prohibitin complex.
Nat Cell Biol. 2025 Apr;27(4):633-640. doi: 10.1038/s41556-025-01620-1. Epub 2025 Mar 21.
6
A Photo-Caged Cross-Linker for Identifying Protein-Protein Interactions.
Chembiochem. 2024 Dec 16;25(24):e202400620. doi: 10.1002/cbic.202400620. Epub 2024 Dec 5.
7
Bringing together but staying apart: decisive differences in animal and fungal mitochondrial inner membrane fusion.
Biol Rev Camb Philos Soc. 2025 Apr;100(2):920-935. doi: 10.1111/brv.13168. Epub 2024 Nov 18.
8
Targeted Analysis of Mitochondrial Protein Conformations and Interactions by Endogenous ROS-Triggered Cross-Linker Release.
Adv Sci (Weinh). 2024 Dec;11(48):e2408462. doi: 10.1002/advs.202408462. Epub 2024 Oct 30.
10
High-throughput identification of calcium-regulated proteins across diverse proteomes.
Cell Rep. 2024 Nov 26;43(11):114879. doi: 10.1016/j.celrep.2024.114879. Epub 2024 Oct 18.

本文引用的文献

1
A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.
PLoS One. 2016 Dec 20;11(12):e0167547. doi: 10.1371/journal.pone.0167547. eCollection 2016.
3
Structure of the mitochondrial ATP synthase from determined by electron cryo-microscopy.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12709-12714. doi: 10.1073/pnas.1615902113. Epub 2016 Oct 24.
4
The architecture of respiratory supercomplexes.
Nature. 2016 Sep 29;537(7622):644-648. doi: 10.1038/nature19774. Epub 2016 Sep 21.
5
Structure of mammalian respiratory complex I.
Nature. 2016 Aug 18;536(7616):354-358. doi: 10.1038/nature19095. Epub 2016 Aug 10.
6
Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.
Mol Cell. 2016 Aug 18;63(4):621-632. doi: 10.1016/j.molcel.2016.06.033. Epub 2016 Aug 4.
7
Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
Circulation. 2016 Sep 20;134(12):883-94. doi: 10.1161/CIRCULATIONAHA.116.022495. Epub 2016 Aug 3.
8
Mitochondria and Cancer.
Cell. 2016 Jul 28;166(3):555-566. doi: 10.1016/j.cell.2016.07.002.
9
Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus.
Nat Rev Endocrinol. 2016 Nov;12(11):633-645. doi: 10.1038/nrendo.2016.104. Epub 2016 Jul 22.
10
Immunometabolism: Mitochondria adapt to bacteria.
Nat Rev Immunol. 2016 Aug;16(8):464-5. doi: 10.1038/nri.2016.83. Epub 2016 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验