Department of Biomedical Imaging and Radiological Science, China Medical University, Xueshi Road 91, Taichung 404, Taiwan.
Sensors (Basel). 2012;12(5):5195-211. doi: 10.3390/s120505195. Epub 2012 Apr 26.
This study proposes a fast 3D dynamic programming expansion to find a shortest surface in a 3D matrix. This algorithm can detect boundaries in an image sequence. Using phantom image studies with added uniform distributed noise from different SNRs, the unsigned error of this proposed method is investigated. Comparing the automated results to the gold standard, the best averaged relative unsigned error of the proposed method is 0.77% (SNR = 20 dB), and its corresponding parameter values are reported. We further apply this method to detect the boundary of the real superficial femoral artery (SFA) in MRI sequences without a contrast injection. The manual tracings on the SFA boundaries are performed by well-trained experts to be the gold standard. The comparisons between the manual tracings and automated results are made on 16 MRI sequences (800 total images). The average unsigned error rate is 2.4% (SD = 2.0%). The results demonstrate that the proposed method can perform qualitatively better than the 2D dynamic programming for vessel boundary detection on MRI sequences.
本研究提出了一种快速的 3D 动态规划扩展方法,以在 3D 矩阵中找到最短的表面。该算法可用于检测图像序列中的边界。通过对添加了不同 SNR 均匀分布噪声的幻影图像进行研究,研究了该方法的无符号误差。将自动生成的结果与金标准进行比较,该方法的最佳平均相对无符号误差为 0.77%(SNR = 20dB),并报告了相应的参数值。我们进一步将该方法应用于在没有对比注射的情况下检测真实股浅动脉(SFA)的边界。手动描记 SFA 边界由经过良好培训的专家进行,作为金标准。对 16 个 MRI 序列(800 个总图像)的手动描记和自动结果进行了比较。平均无符号误差率为 2.4%(SD=2.0%)。结果表明,该方法在 MRI 序列上进行血管边界检测的性能明显优于二维动态规划。