Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA.
IEEE Trans Med Imaging. 1995;14(4):719-32. doi: 10.1109/42.476113.
Intravascular ultrasound imaging of coronary arteries provides important information about coronary lumen, wall, and plaque characteristics. Quantitative studies of coronary atherosclerosis using intravascular ultrasound and manual identification of wall and plaque borders are limited by the need for observers with substantial experience and the tedious nature of manual border detection. We have developed a method for segmentation of intravascular ultrasound images that identifies the internal and external elastic laminae and the plaque-lumen interface. The border detection algorithm was evaluated in a set of 38 intravascular ultrasound images acquired from fresh cadaveric hearts using a 30 MHz imaging catheter. To assess the performance of our border detection method we compared five quantitative measures of arterial anatomy derived from computer-detected borders with measures derived from borders manually defined by expert observers. Computer-detected and observer-defined lumen areas correlated very well (r=0.96, y=1.02x+0.52), as did plaque areas (r=0.95, y=1.07x-0.48), and percent area stenosis (r=0.93, y=0.99x-1.34.) Computer-derived segmental plaque thickness measurements were highly accurate. Our knowledge-based intravascular ultrasound segmentation method shows substantial promise for the quantitative analysis of in vivo intravascular ultrasound image data.
冠状动脉血管内超声成像提供了有关冠状动脉管腔、壁和斑块特征的重要信息。使用血管内超声和手动识别壁和斑块边界对冠状动脉粥样硬化进行定量研究受到观察者需要具有丰富经验以及手动边界检测繁琐性质的限制。我们已经开发出一种用于分割血管内超声图像的方法,该方法可识别内弹性膜和外弹性膜以及斑块-管腔界面。边界检测算法在一组使用 30 MHz 成像导管从新鲜尸体心脏获得的 38 张血管内超声图像中进行了评估。为了评估我们的边界检测方法的性能,我们将源自计算机检测边界的五种定量动脉解剖学测量值与源自专家观察者手动定义边界的测量值进行了比较。计算机检测和观察者定义的管腔面积相关性非常好(r=0.96,y=1.02x+0.52),斑块面积(r=0.95,y=1.07x-0.48)和百分比狭窄面积(r=0.93,y=0.99x-1.34)也是如此。计算机衍生的节段性斑块厚度测量值非常准确。我们基于知识的血管内超声分割方法为体内血管内超声图像数据的定量分析提供了很大的希望。