Suppr超能文献

利用同步辐射 X 射线荧光纳米成像技术发现,锰在多巴胺能细胞的高尔基体内蓄积。

Manganese accumulates within golgi apparatus in dopaminergic cells as revealed by synchrotron X-ray fluorescence nanoimaging.

出版信息

ACS Chem Neurosci. 2010 Mar 17;1(3):194-203. doi: 10.1021/cn900021z. Epub 2009 Dec 17.

Abstract

Chronic exposure to manganese results in neurological symptoms referred to as manganism and is identified as a risk factor for Parkinson's disease. In vitro, manganese induces cell death in the dopaminergic cells, but the mechanisms of manganese cytotoxicity are still unexplained. In particular, the subcellular distribution of manganese and its interaction with other trace elements needed to be assessed. Applying synchrotron X-ray fluorescence nanoimaging, we found that manganese was located within the Golgi apparatus of PC12 dopaminergic cells at physiologic concentrations. At increasing concentrations, manganese accumulates within the Golgi apparatus until cytotoxic concentrations are reached resulting in a higher cytoplasmic content probably after the Golgi apparatus storage capacity is exceeded. Cell exposure to manganese and brefeldin A, a molecule known to specifically cause the collapse of the Golgi apparatus, results in the striking intracellular redistribution of manganese, which accumulates in the cytoplasm and the nucleus. These results indicate that the Golgi apparatus plays an important role in the cellular detoxification of manganese. In addition manganese exposure induces a decrease in total iron content, which could contribute to the overall neurotoxicity.

摘要

慢性锰暴露会导致神经症状,称为锰中毒,被认为是帕金森病的一个危险因素。在体外,锰会诱导多巴胺能细胞死亡,但锰细胞毒性的机制仍不清楚。特别是需要评估锰的亚细胞分布及其与其他必需微量元素的相互作用。应用同步加速器 X 射线荧光纳米成像技术,我们发现锰在生理浓度下位于 PC12 多巴胺能细胞的高尔基体中。随着浓度的增加,锰在高尔基体中积累,直到达到细胞毒性浓度,导致细胞质内容物升高,可能是高尔基体的储存容量超过之后的结果。细胞暴露于锰和布雷菲德菌素 A(一种已知可特异性导致高尔基体崩溃的分子)会导致锰在细胞内的显著重新分布,锰在细胞质和核内积累。这些结果表明高尔基体在锰的细胞解毒中起着重要作用。此外,锰暴露会诱导总铁含量的减少,这可能导致整体神经毒性。

相似文献

1
Manganese accumulates within golgi apparatus in dopaminergic cells as revealed by synchrotron X-ray fluorescence nanoimaging.
ACS Chem Neurosci. 2010 Mar 17;1(3):194-203. doi: 10.1021/cn900021z. Epub 2009 Dec 17.
3
SLC30A10 Mutation Involved in Parkinsonism Results in Manganese Accumulation within Nanovesicles of the Golgi Apparatus.
ACS Chem Neurosci. 2019 Jan 16;10(1):599-609. doi: 10.1021/acschemneuro.8b00451. Epub 2018 Oct 15.
5
Capacity of the golgi apparatus for biogenesis from the endoplasmic reticulum.
Mol Biol Cell. 2003 Dec;14(12):5011-8. doi: 10.1091/mbc.e03-06-0437. Epub 2003 Oct 17.
8
X-ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons.
J Neurochem. 2013 Jan;124(2):250-61. doi: 10.1111/jnc.12073. Epub 2012 Dec 5.

引用本文的文献

1
Manganese pollution in eastern India causing cancer risk.
Sci Rep. 2024 Nov 19;14(1):28588. doi: 10.1038/s41598-024-78478-0.
2
Insights into the regulation of cellular Mn homeostasis via TMEM165.
Biochim Biophys Acta Mol Basis Dis. 2023 Aug;1869(6):166717. doi: 10.1016/j.bbadis.2023.166717. Epub 2023 Apr 14.
3
A genetically encoded fluorescent sensor for manganese(II), engineered from lanmodulin.
Proc Natl Acad Sci U S A. 2022 Dec 20;119(51):e2212723119. doi: 10.1073/pnas.2212723119. Epub 2022 Dec 12.
5
Exposure of metal toxicity in Alzheimer's disease: An extensive review.
Front Pharmacol. 2022 Aug 29;13:903099. doi: 10.3389/fphar.2022.903099. eCollection 2022.
7
Transport, functions, and interaction of calcium and manganese in plant organellar compartments.
Plant Physiol. 2021 Dec 4;187(4):1940-1972. doi: 10.1093/plphys/kiab122.
8
A hierarchy of manganese competition and entry in organotypic hippocampal slice cultures.
NMR Biomed. 2021 Apr;34(4):e4476. doi: 10.1002/nbm.4476. Epub 2021 Feb 3.
9
Molecular Mechanisms of Metal Toxicity in the Pathogenesis of Alzheimer's Disease.
Mol Neurobiol. 2021 Jan;58(1):1-20. doi: 10.1007/s12035-020-02096-w. Epub 2020 Sep 5.

本文引用的文献

1
Bio-metals imaging and speciation in cells using proton and synchrotron radiation X-ray microspectroscopy.
J R Soc Interface. 2009 Oct 6;6 Suppl 5(Suppl 5):S649-58. doi: 10.1098/rsif.2009.0166.focus. Epub 2009 Jul 15.
2
The case for manganese interaction with mitochondria.
Neurotoxicology. 2009 Jul;30(4):727-9. doi: 10.1016/j.neuro.2009.05.003. Epub 2009 May 22.
3
Manganese neurotoxicity: lessons learned from longitudinal studies in nonhuman primates.
Environ Health Perspect. 2009 Mar;117(3):325-32. doi: 10.1289/ehp.0800035. Epub 2008 Oct 3.
5
Neurological risks associated with manganese exposure from welding operations--a literature review.
Int J Hyg Environ Health. 2009 Sep;212(5):459-69. doi: 10.1016/j.ijheh.2008.12.003. Epub 2009 Jan 31.
6
The formation of catechol isoquinolines in PC12 cells exposed to manganese.
Neurosci Lett. 2008 Oct 24;444(2):122-6. doi: 10.1016/j.neulet.2008.07.096. Epub 2008 Aug 15.
7
Golgi apparatus and neurodegenerative diseases.
Int J Dev Neurosci. 2008 Oct;26(6):523-34. doi: 10.1016/j.ijdevneu.2008.05.006. Epub 2008 May 23.
8
Palmitoylation and membrane interactions of the neuroprotective chaperone cysteine-string protein.
J Biol Chem. 2008 Sep 5;283(36):25014-26. doi: 10.1074/jbc.M802140200. Epub 2008 Jul 2.
9
Manganese accumulates primarily in nuclei of cultured brain cells.
Neurotoxicology. 2008 May;29(3):466-70. doi: 10.1016/j.neuro.2008.02.012. Epub 2008 Mar 6.
10
A Parkinsonian syndrome in methcathinone users and the role of manganese.
N Engl J Med. 2008 Mar 6;358(10):1009-17. doi: 10.1056/NEJMoa072488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验