Suppr超能文献

小鼠新皮层初级和后内侧视觉区的独特功能特性。

Distinct functional properties of primary and posteromedial visual area of mouse neocortex.

机构信息

Department of Neurophysiology, Brain Research Institute, University of Zurich, CH-8057 Zurich, Switzerland.

出版信息

J Neurosci. 2012 Jul 11;32(28):9716-26. doi: 10.1523/JNEUROSCI.0110-12.2012.

Abstract

Visual input provides important landmarks for navigating in the environment, information that in mammals is processed by specialized areas in the visual cortex. In rodents, the posteromedial area (PM) mediates visual information between primary visual cortex (V1) and the retrosplenial cortex, which further projects to the hippocampus. To understand the functional role of area PM requires a detailed analysis of its spatial frequency (SF) and temporal frequency (TF) tuning. Here, we applied two-photon calcium imaging to map neuronal tuning for orientation, direction, SF and TF, and speed in response to drifting gratings in V1 and PM of anesthetized mice. The distributions of orientation and direction tuning were similar in V1 and PM. Notably, in both areas we found a preference for cardinal compared to oblique orientations. The overrepresentation of cardinal tuned neurons was particularly strong in PM showing narrow tuning bandwidths for horizontal and vertical orientations. A detailed analysis of SF and TF tuning revealed a broad range of highly tuned neurons in V1. On the contrary, PM contained one subpopulation of neurons with high spatial acuity and a second subpopulation broadly tuned for low SFs. Furthermore, ∼20% of the responding neurons in V1 and only 12% in PM were tuned to the speed of drifting gratings with PM preferring slower drift rates compared to V1. Together, PM is tuned for cardinal orientations, high SFs, and low speed and is further located between V1 and the retrosplenial cortex consistent with a role in processing natural scenes during spatial navigation.

摘要

视觉输入为在环境中导航提供了重要的地标,这些信息在哺乳动物中由视觉皮层的专门区域处理。在啮齿动物中,后内侧区域(PM)介导初级视觉皮层(V1)和后扣带回皮层之间的视觉信息,后扣带回皮层进一步投射到海马体。要了解 PM 区域的功能作用,需要对其空间频率(SF)和时间频率(TF)调谐进行详细分析。在这里,我们应用双光子钙成像来绘制在麻醉小鼠的 V1 和 PM 中,神经元对定向、方向、SF 和 TF 以及速度的调谐。V1 和 PM 中的取向和方向调谐分布相似。值得注意的是,在这两个区域中,我们发现了对基数取向的偏好,而不是斜向取向。在 PM 中,基数调谐神经元的过表达尤其强烈,表现出对水平和垂直取向的窄调谐带宽。对 SF 和 TF 调谐的详细分析显示,V1 中存在大量高度调谐的神经元。相比之下,PM 中包含一个具有高空间灵敏度的神经元亚群和另一个对低 SF 广泛调谐的神经元亚群。此外,V1 中约 20%的反应神经元和 PM 中只有 12%的神经元对以 PM 为中心的漂移光栅速度进行调谐,与 V1 相比,PM 更喜欢较慢的漂移速率。总的来说,PM 对基数取向、高 SF 和低速度进行调谐,并且进一步位于 V1 和后扣带回皮层之间,与在空间导航过程中处理自然场景的作用一致。

相似文献

1
Distinct functional properties of primary and posteromedial visual area of mouse neocortex.
J Neurosci. 2012 Jul 11;32(28):9716-26. doi: 10.1523/JNEUROSCI.0110-12.2012.
2
Contralateral Bias of High Spatial Frequency Tuning and Cardinal Direction Selectivity in Mouse Visual Cortex.
J Neurosci. 2017 Oct 18;37(42):10125-10138. doi: 10.1523/JNEUROSCI.1484-17.2017. Epub 2017 Sep 18.
3
Unique Spatial Integration in Mouse Primary Visual Cortex and Higher Visual Areas.
J Neurosci. 2020 Feb 26;40(9):1862-1873. doi: 10.1523/JNEUROSCI.1997-19.2020. Epub 2020 Jan 16.
4
Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience.
J Neurosci. 2021 Feb 17;41(7):1470-1488. doi: 10.1523/JNEUROSCI.0548-20.2020. Epub 2020 Dec 29.
5
Orientation selectivity in the visual cortex of the nine-banded armadillo.
J Neurophysiol. 2017 Mar 1;117(3):1395-1406. doi: 10.1152/jn.00851.2016. Epub 2017 Jan 4.
6
Tuning for spatiotemporal frequency and speed in directionally selective neurons of macaque striate cortex.
J Neurosci. 2006 Mar 15;26(11):2941-50. doi: 10.1523/JNEUROSCI.3936-05.2006.
7
Spatiotemporal frequency tuning dynamics of neurons in the owl visual wulst.
J Neurophysiol. 2010 Jun;103(6):3424-36. doi: 10.1152/jn.01151.2009. Epub 2010 Apr 14.
8
Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1.
Front Neural Circuits. 2013 Sep 23;7:143. doi: 10.3389/fncir.2013.00143. eCollection 2013.
9
Spatial and temporal frequency tuning in striate cortex: functional uniformity and specializations related to receptive field eccentricity.
Eur J Neurosci. 2010 Mar;31(6):1043-62. doi: 10.1111/j.1460-9568.2010.07118.x. Epub 2010 Mar 3.

引用本文的文献

2
Model mimicry limits conclusions about neural tuning and can mistakenly imply unlikely priors.
Nat Commun. 2025 Jul 1;16(1):5427. doi: 10.1038/s41467-025-60859-2.
4
Broadband visual stimuli improve neuronal representation and sensory perception.
Nat Commun. 2025 Mar 26;16(1):2957. doi: 10.1038/s41467-025-58003-1.
6
Higher-order thalamic input to cortex selectively conveys state information.
Cell Rep. 2025 Feb 25;44(2):115292. doi: 10.1016/j.celrep.2025.115292. Epub 2025 Feb 11.
7
Visual Coding along Multiple Brain Areas.
Int J Psychol Res (Medellin). 2024 Apr 26;17(2):54-75. doi: 10.21500/20112084.7390. eCollection 2024 Jul-Dec.
8
Verbal Encoding Strategies in Visuo-Spatial Working Memory.
J Cogn. 2025 Jan 6;8(1):2. doi: 10.5334/joc.406. eCollection 2025.
10
Neural tuning instantiates prior expectations in the human visual system.
Nat Commun. 2023 Sep 1;14(1):5320. doi: 10.1038/s41467-023-41027-w.

本文引用的文献

1
Functional specialization of seven mouse visual cortical areas.
Neuron. 2011 Dec 22;72(6):1040-54. doi: 10.1016/j.neuron.2011.12.004.
2
Functional specialization of mouse higher visual cortical areas.
Neuron. 2011 Dec 22;72(6):1025-39. doi: 10.1016/j.neuron.2011.11.013.
3
Altered visual experience induces instructive changes of orientation preference in mouse visual cortex.
J Neurosci. 2011 Sep 28;31(39):13911-20. doi: 10.1523/JNEUROSCI.2143-11.2011.
4
On the usefulness of 'what' and 'where' pathways in vision.
Trends Cogn Sci. 2011 Oct;15(10):460-6. doi: 10.1016/j.tics.2011.08.005. Epub 2011 Sep 7.
5
Prior and prejudice.
Nat Neurosci. 2011 Jul 26;14(8):943-5. doi: 10.1038/nn.2883.
8
A new neural framework for visuospatial processing.
Nat Rev Neurosci. 2011 Apr;12(4):217-30. doi: 10.1038/nrn3008.
9
Gateways of ventral and dorsal streams in mouse visual cortex.
J Neurosci. 2011 Feb 2;31(5):1905-18. doi: 10.1523/JNEUROSCI.3488-10.2011.
10
Parallel input channels to mouse primary visual cortex.
J Neurosci. 2010 Apr 28;30(17):5912-26. doi: 10.1523/JNEUROSCI.6456-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验