Aboharb Farid, Davoudian Pasha A, Shao Ling-Xiao, Liao Clara, Rzepka Gillian N, Wojtasiewicz Cassandra, Indajang Jonathan, Dibbs Mark, Rondeau Jocelyne, Sherwood Alexander M, Kaye Alfred P, Kwan Alex C
Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, 10021, USA.
bioRxiv. 2024 Nov 23:2024.05.23.590306. doi: 10.1101/2024.05.23.590306.
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results support a novel approach for characterizing and validating psychoactive drugs with psychedelic properties.
裸盖菇素、氯胺酮和摇头丸都是具有精神活性的化合物,它们产生的行为效应既有明显特征,也有重叠之处。人们越来越有兴趣将这些化合物用作治疗药物,这就需要进行临床前试验,以便能够准确筛选迷幻药及相关类似物。我们认为,一种有前景的方法可能是测量药物对天然脑组织中神经可塑性标志物的作用。因此,我们开发了一种药物分类流程,利用光片荧光显微镜在细胞分辨率下检测即刻早期基因表达,然后进行机器学习。我们用一组药物对雄性和雌性小鼠进行了测试,这些药物包括裸盖菇素、氯胺酮、5-甲氧基二甲基色胺、6-氟-N,N-二乙基色胺、摇头丸、急性氟西汀、慢性氟西汀以及赋形剂。在一对其余分类中,能够以67%的准确率识别出确切的药物,显著高于12.5%的随机水平。在一对一分类中,裸盖菇素与5-甲氧基二甲基色胺、氯胺酮、摇头丸或急性氟西汀的区分准确率超过95%。我们使用夏普利加法解释来确定驱动机器学习预测的脑区。我们的结果支持了一种用于表征和验证具有迷幻特性的精神活性药物的新方法。