Suppr超能文献

脂筏改变霍乱毒素 A1 亚基的稳定性和活性。

Lipid rafts alter the stability and activity of the cholera toxin A1 subunit.

机构信息

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32826, USA.

出版信息

J Biol Chem. 2012 Aug 31;287(36):30395-405. doi: 10.1074/jbc.M112.385575. Epub 2012 Jul 11.

Abstract

Cholera toxin (CT) travels from the cell surface to the endoplasmic reticulum (ER) as an AB holotoxin. ER-specific conditions then promote the dissociation of the catalytic CTA1 subunit from the rest of the toxin. CTA1 is held in a stable conformation by its assembly in the CT holotoxin, but the dissociated CTA1 subunit is an unstable protein that spontaneously assumes a disordered state at physiological temperature. This unfolding event triggers the ER-to-cytosol translocation of CTA1 through the quality control mechanism of ER-associated degradation. The translocated pool of CTA1 must regain a folded, active structure to modify its G protein target which is located in lipid rafts at the cytoplasmic face of the plasma membrane. Here, we report that lipid rafts place disordered CTA1 in a functional conformation. The hydrophobic C-terminal domain of CTA1 is essential for binding to the plasma membrane and lipid rafts. These interactions inhibit the temperature-induced unfolding of CTA1. Moreover, lipid rafts could promote a gain of structure in the disordered, 37 °C conformation of CTA1. This gain of structure corresponded to a gain of function: whereas CTA1 by itself exhibited minimal in vitro activity at 37 °C, exposure to lipid rafts resulted in substantial toxin activity at 37 °C. In vivo, the disruption of lipid rafts with filipin substantially reduced the activity of cytosolic CTA1. Lipid rafts thus exhibit a chaperone-like function that returns disordered CTA1 to an active state and is required for the optimal in vivo activity of CTA1.

摘要

霍乱毒素 (CT) 作为 AB 全毒素从细胞表面转运到内质网 (ER)。然后,ER 特有的条件促进催化 CTA1 亚基与毒素的其余部分解离。CTA1 被其在 CT 全毒素中的组装保持在稳定构象,但解离的 CTA1 亚基是一种不稳定的蛋白质,在生理温度下自发呈现无序状态。这种展开事件通过 ER 相关降解的质量控制机制触发 CTA1 从 ER 向细胞质的易位。易位的 CTA1 池必须恢复折叠的、有活性的结构,以修饰其位于质膜细胞质侧的脂质筏中的 G 蛋白靶标。在这里,我们报告脂质筏将无序的 CTA1 置于功能构象中。CTA1 的疏水 C 端结构域对于与质膜和脂质筏结合是必不可少的。这些相互作用抑制 CTA1 温度诱导的展开。此外,脂质筏可以促进无序的、37°C 构象的 CTA1 获得结构。这种结构的获得对应于功能的获得:尽管 CTA1 本身在 37°C 时表现出最小的体外活性,但暴露于脂质筏会导致 37°C 时毒素活性显著增加。在体内,用 filipin 破坏脂质筏会大大降低细胞质 CTA1 的活性。因此,脂质筏表现出类似伴侣的功能,可将无序的 CTA1 恢复到活性状态,并且是 CTA1 体内最佳活性所必需的。

相似文献

1
Lipid rafts alter the stability and activity of the cholera toxin A1 subunit.
J Biol Chem. 2012 Aug 31;287(36):30395-405. doi: 10.1074/jbc.M112.385575. Epub 2012 Jul 11.
3
Protein disulfide isomerase does not act as an unfoldase in the disassembly of cholera toxin.
Biosci Rep. 2018 Sep 7;38(5). doi: 10.1042/BSR20181320. Print 2018 Oct 31.
4
5
Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit.
Biochemistry. 2010 Oct 19;49(41):8839-46. doi: 10.1021/bi101201c.
6
Co- and post-translocation roles for HSP90 in cholera Intoxication.
J Biol Chem. 2014 Nov 28;289(48):33644-54. doi: 10.1074/jbc.M114.609800. Epub 2014 Oct 15.
8
Conformational instability of the cholera toxin A1 polypeptide.
J Mol Biol. 2007 Dec 7;374(4):1114-28. doi: 10.1016/j.jmb.2007.10.025. Epub 2007 Oct 16.
9
Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication.
J Mol Biol. 2009 Nov 13;393(5):1083-96. doi: 10.1016/j.jmb.2009.09.013. Epub 2009 Sep 11.

引用本文的文献

1
Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not heat-labile enterotoxin.
Infect Immun. 2023 Nov 16;91(11):e0033223. doi: 10.1128/iai.00332-23. Epub 2023 Oct 25.
3
cAMP-Independent Activation of the Unfolded Protein Response by Cholera Toxin.
Infect Immun. 2021 Jan 19;89(2). doi: 10.1128/IAI.00447-20.
4
Effects of membrane lipid composition on Mycobacterium tuberculosis EsxA membrane insertion: A dual play of fluidity and charge.
Tuberculosis (Edinb). 2019 Sep;118:101854. doi: 10.1016/j.tube.2019.07.005. Epub 2019 Jul 30.
5
Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase.
Toxins (Basel). 2019 Aug 4;11(8):458. doi: 10.3390/toxins11080458.
6
Intracellular Trafficking and Translocation of Pertussis Toxin.
Toxins (Basel). 2019 Jul 25;11(8):437. doi: 10.3390/toxins11080437.
8
Lipids in the cell: organisation regulates function.
Cell Mol Life Sci. 2018 Jun;75(11):1909-1927. doi: 10.1007/s00018-018-2765-4. Epub 2018 Feb 9.
9
Inhibition of Cholera Toxin and Other AB Toxins by Polyphenolic Compounds.
PLoS One. 2016 Nov 9;11(11):e0166477. doi: 10.1371/journal.pone.0166477. eCollection 2016.

本文引用的文献

1
Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum.
Toxins (Basel). 2010 Mar;2(3):310-25. doi: 10.3390/toxins2030310. Epub 2010 Mar 5.
2
Modulation of toxin stability by 4-phenylbutyric acid and negatively charged phospholipids.
PLoS One. 2011;6(8):e23692. doi: 10.1371/journal.pone.0023692. Epub 2011 Aug 22.
3
Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit.
J Biol Chem. 2011 Jun 24;286(25):22090-100. doi: 10.1074/jbc.M111.237966. Epub 2011 May 4.
6
Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit.
Biochemistry. 2010 Oct 19;49(41):8839-46. doi: 10.1021/bi101201c.
7
Stabilization of the tertiary structure of the cholera toxin A1 subunit inhibits toxin dislocation and cellular intoxication.
J Mol Biol. 2009 Nov 13;393(5):1083-96. doi: 10.1016/j.jmb.2009.09.013. Epub 2009 Sep 11.
9
Ricin A chain insertion into endoplasmic reticulum membranes is triggered by a temperature increase to 37 {degrees}C.
J Biol Chem. 2009 Apr 10;284(15):10232-42. doi: 10.1074/jbc.M808387200. Epub 2009 Feb 11.
10
Order-disorder-order transitions mediate the activation of cholera toxin.
J Mol Biol. 2008 Mar 28;377(3):748-60. doi: 10.1016/j.jmb.2007.12.075. Epub 2008 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验