Suppr超能文献

ADP核糖基化因子6作为折叠型而非无序型霍乱毒素A1多肽的变构激活剂。

ADP-ribosylation factor 6 acts as an allosteric activator for the folded but not disordered cholera toxin A1 polypeptide.

作者信息

Banerjee Tuhina, Taylor Michael, Jobling Michael G, Burress Helen, Yang ZhiJie, Serrano Albert, Holmes Randall K, Tatulian Suren A, Teter Ken

机构信息

Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA.

出版信息

Mol Microbiol. 2014 Nov;94(4):898-912. doi: 10.1111/mmi.12807. Epub 2014 Oct 16.

Abstract

The catalytic A1 subunit of cholera toxin (CTA1) has a disordered structure at 37°C. An interaction with host factors must therefore place CTA1 in a folded conformation for the modification of its Gsα target which resides in a lipid raft environment. Host ADP-ribosylation factors (ARFs) act as in vitro allosteric activators of CTA1, but the molecular events of this process are not fully characterized. Isotope-edited Fourier transform infrared spectroscopy monitored ARF6-induced structural changes to CTA1, which were correlated to changes in CTA1 activity. We found ARF6 prevents the thermal disordering of structured CTA1 and stimulates the activity of stabilized CTA1 over a range of temperatures. Yet ARF6 alone did not promote the refolding of disordered CTA1 to an active state. Instead, lipid rafts shifted disordered CTA1 to a folded conformation with a basal level of activity that could be further stimulated by ARF6. Thus, ARF alone is unable to activate disordered CTA1 at physiological temperature: additional host factors such as lipid rafts place CTA1 in the folded conformation required for its ARF-mediated activation. Interaction with ARF is required for in vivo toxin activity, as enzymatically active CTA1 mutants that cannot be further stimulated by ARF6 fail to intoxicate cultured cells.

摘要

霍乱毒素(CTA1)的催化A1亚基在37°C时具有无序结构。因此,与宿主因子的相互作用必须使CTA1处于折叠构象,以便修饰其位于脂筏环境中的Gsα靶点。宿主ADP核糖基化因子(ARFs)在体外作为CTA1的变构激活剂,但这一过程的分子事件尚未完全明确。同位素编辑傅里叶变换红外光谱监测了ARF6诱导的CTA1结构变化,这些变化与CTA1活性的变化相关。我们发现ARF6可防止结构化CTA1的热无序化,并在一定温度范围内刺激稳定化CTA1的活性。然而,单独的ARF6并不能促进无序CTA1重折叠为活性状态。相反,脂筏将无序CTA1转变为具有基础活性水平的折叠构象,ARF6可进一步刺激该活性。因此,仅ARF在生理温度下无法激活无序CTA1:脂筏等其他宿主因子使CTA1处于其ARF介导的激活所需的折叠构象。体内毒素活性需要与ARF相互作用,因为不能被ARF6进一步刺激的具有酶活性的CTA1突变体无法使培养细胞中毒。

相似文献

1
2
Lipid rafts alter the stability and activity of the cholera toxin A1 subunit.
J Biol Chem. 2012 Aug 31;287(36):30395-405. doi: 10.1074/jbc.M112.385575. Epub 2012 Jul 11.
5
Order-disorder-order transitions mediate the activation of cholera toxin.
J Mol Biol. 2008 Mar 28;377(3):748-60. doi: 10.1016/j.jmb.2007.12.075. Epub 2008 Jan 5.
6
Co- and post-translocation roles for HSP90 in cholera Intoxication.
J Biol Chem. 2014 Nov 28;289(48):33644-54. doi: 10.1074/jbc.M114.609800. Epub 2014 Oct 15.
7
Structural basis for the activation of cholera toxin by human ARF6-GTP.
Science. 2005 Aug 12;309(5737):1093-6. doi: 10.1126/science.1113398.
9
Conformational instability of the cholera toxin A1 polypeptide.
J Mol Biol. 2007 Dec 7;374(4):1114-28. doi: 10.1016/j.jmb.2007.10.025. Epub 2007 Oct 16.
10
Contribution of subdomain structure to the thermal stability of the cholera toxin A1 subunit.
Biochemistry. 2010 Oct 19;49(41):8839-46. doi: 10.1021/bi101201c.

引用本文的文献

1
Reduction is sufficient for the disassembly of ricin and Shiga toxin 1 but not heat-labile enterotoxin.
Infect Immun. 2023 Nov 16;91(11):e0033223. doi: 10.1128/iai.00332-23. Epub 2023 Oct 25.
2
Proline Isomerization as a Key Determinant for Hsp90-Toxin Interactions.
Front Cell Infect Microbiol. 2021 Oct 22;11:771653. doi: 10.3389/fcimb.2021.771653. eCollection 2021.
3
cAMP-Independent Activation of the Unfolded Protein Response by Cholera Toxin.
Infect Immun. 2021 Jan 19;89(2). doi: 10.1128/IAI.00447-20.
4
Quercetin-3-Rutinoside Blocks the Disassembly of Cholera Toxin by Protein Disulfide Isomerase.
Toxins (Basel). 2019 Aug 4;11(8):458. doi: 10.3390/toxins11080458.
5
Intracellular Trafficking and Translocation of Pertussis Toxin.
Toxins (Basel). 2019 Jul 25;11(8):437. doi: 10.3390/toxins11080437.
7
Inhibition of Cholera Toxin and Other AB Toxins by Polyphenolic Compounds.
PLoS One. 2016 Nov 9;11(11):e0166477. doi: 10.1371/journal.pone.0166477. eCollection 2016.
9
The plasma membrane as a capacitor for energy and metabolism.
Am J Physiol Cell Physiol. 2016 Feb 1;310(3):C181-92. doi: 10.1152/ajpcell.00087.2015. Epub 2015 Nov 25.

本文引用的文献

1
Substrate-induced unfolding of protein disulfide isomerase displaces the cholera toxin A1 subunit from its holotoxin.
PLoS Pathog. 2014 Feb 6;10(2):e1003925. doi: 10.1371/journal.ppat.1003925. eCollection 2014 Feb.
2
Grape extracts inhibit multiple events in the cell biology of cholera intoxication.
PLoS One. 2013 Sep 5;8(9):e73390. doi: 10.1371/journal.pone.0073390. eCollection 2013.
3
Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy.
Methods Mol Biol. 2013;974:177-218. doi: 10.1007/978-1-62703-275-9_9.
4
Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins.
Front Cell Infect Microbiol. 2012 Apr 11;2:51. doi: 10.3389/fcimb.2012.00051. eCollection 2012.
5
Lipid rafts alter the stability and activity of the cholera toxin A1 subunit.
J Biol Chem. 2012 Aug 31;287(36):30395-405. doi: 10.1074/jbc.M112.385575. Epub 2012 Jul 11.
7
Cholera toxin: an intracellular journey into the cytosol by way of the endoplasmic reticulum.
Toxins (Basel). 2010 Mar;2(3):310-25. doi: 10.3390/toxins2030310. Epub 2010 Mar 5.
8
Protein-disulfide isomerase displaces the cholera toxin A1 subunit from the holotoxin without unfolding the A1 subunit.
J Biol Chem. 2011 Jun 24;286(25):22090-100. doi: 10.1074/jbc.M111.237966. Epub 2011 May 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验