Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
J Mol Biol. 2012 Oct 19;423(2):143-58. doi: 10.1016/j.jmb.2012.06.042. Epub 2012 Jul 9.
Mitochondrial and peroxisomal fission are essential processes with defects resulting in cardiomyopathy and neonatal lethality. Central to organelle fission is Fis1, a monomeric tetratricopeptide repeat (TPR)-like protein whose role in assembly of the fission machinery remains obscure. Two nonfunctional, Saccharomyces cerevisiae Fis1 mutants (L80P or E78D/I85T/Y88H) were previously identified in genetic screens. Here, we find that these two variants in the cytosolic domain of Fis1 (Fis1ΔTM) are unexpectedly dimeric. A truncation variant of Fis1ΔTM that lacks an N-terminal regulatory domain is also found to be dimeric. The ability to dimerize is a property innate to the native Fis1ΔTM amino acid sequence as we find this domain is dimeric after transient exposure to elevated temperature or chemical denaturants and is kinetically trapped at room temperature. This is the first demonstration of a specific self-association in solution for the Fis1 cytoplasmic domain. We propose a three-dimensional domain-swapped model for dimerization that is validated by a designed mutation, A72P, which potently disrupts dimerization of wild-type Fis1. A72P also disrupts dimerization of nonfunctional variants, indicating a common structural basis for dimerization. The obligate monomer variant A72P, like the dimer-promoting variants, is nonfunctional in fission, consistent with a model in which Fis1 activity depends on its ability to interconvert between monomer and dimer species. These studies suggest a new functionally important manner in which TPR-containing proteins may reversibly self-associate.
线粒体和过氧化物酶体的分裂是必不可少的过程,其缺陷会导致心肌病和新生儿致死。细胞器分裂的核心是 Fis1,一种单体四肽重复(TPR)样蛋白,其在分裂机制组装中的作用仍不清楚。先前在遗传筛选中鉴定出两种无功能的酿酒酵母 Fis1 突变体(L80P 或 E78D/I85T/Y88H)。在这里,我们发现 Fis1 细胞质结构域中的这两种变体(Fis1ΔTM)出人意料地是二聚体。还发现缺乏 N 端调节结构域的 Fis1ΔTM 截断变体也是二聚体。二聚化的能力是天然 Fis1ΔTM 氨基酸序列的固有特性,因为我们发现该结构域在短暂暴露于高温或化学变性剂后是二聚体的,并且在室温下被动力学捕获。这是首次在溶液中对 Fis1 细胞质结构域进行特定的自我缔合的证明。我们提出了一种三维结构域交换模型,用于二聚化,该模型通过设计突变 A72P 得到验证,该突变强烈破坏野生型 Fis1 的二聚化。A72P 还破坏了无功能变体的二聚化,表明二聚化具有共同的结构基础。与促进二聚体的变体一样,必需单体变体 A72P 在分裂中也是无功能的,这与 Fis1 活性取决于其在单体和二聚体之间相互转换的能力的模型一致。这些研究表明 TPR 包含的蛋白质可能以新的、功能重要的方式可逆地自我缔合。