Suppr超能文献

术后脊柱的压缩感知多光谱成像。

Compressed-sensing multispectral imaging of the postoperative spine.

机构信息

Department of Radiology, Stanford University, Stanford, California, USA.

出版信息

J Magn Reson Imaging. 2013 Jan;37(1):243-8. doi: 10.1002/jmri.23750. Epub 2012 Jul 12.

Abstract

PURPOSE

To apply compressed sensing (CS) to in vivo multispectral imaging (MSI), which uses additional encoding to avoid magnetic resonance imaging (MRI) artifacts near metal, and demonstrate the feasibility of CS-MSI in postoperative spinal imaging.

MATERIALS AND METHODS

Thirteen subjects referred for spinal MRI were examined using T2-weighted MSI. A CS undersampling factor was first determined using a structural similarity index as a metric for image quality. Next, these fully sampled datasets were retrospectively undersampled using a variable-density random sampling scheme and reconstructed using an iterative soft-thresholding method. The fully and undersampled images were compared using a 5-point scale. Prospectively undersampled CS-MSI data were also acquired from two subjects to ensure that the prospective random sampling did not affect the image quality.

RESULTS

A two-fold outer reduction factor was deemed feasible for the spinal datasets. CS-MSI images were shown to be equivalent or better than the original MSI images in all categories: nerve visualization: P = 0.00018; image artifact: P = 0.00031; image quality: P = 0.0030. No alteration of image quality and T2 contrast was observed from prospectively undersampled CS-MSI.

CONCLUSION

This study shows that the inherently sparse nature of MSI data allows modest undersampling followed by CS reconstruction with no loss of diagnostic quality.

摘要

目的

将压缩感知(CS)应用于体内多光谱成像(MSI),该方法使用额外的编码来避免金属附近的磁共振成像(MRI)伪影,并证明 CS-MSI 在术后脊柱成像中的可行性。

材料和方法

对 13 名因脊柱 MRI 而就诊的患者进行了 T2 加权 MSI 检查。首先使用结构相似性指数作为图像质量指标确定 CS 欠采样因子。接下来,使用可变密度随机采样方案对这些完全采样数据集进行回顾性欠采样,并使用迭代软阈值方法进行重建。使用 5 分制对完全采样和欠采样图像进行比较。还从两名患者前瞻性地获取了 CS-MSI 数据,以确保前瞻性随机采样不会影响图像质量。

结果

认为对于脊柱数据集,两倍的外部缩减因子是可行的。CS-MSI 图像在所有类别中均等同于或优于原始 MSI 图像:神经可视化:P = 0.00018;图像伪影:P = 0.00031;图像质量:P = 0.0030。从前瞻性欠采样 CS-MSI 中未观察到图像质量和 T2 对比的改变。

结论

本研究表明,MSI 数据的固有稀疏性允许适度的欠采样,然后进行 CS 重建,而不会降低诊断质量。

相似文献

1
Compressed-sensing multispectral imaging of the postoperative spine.
J Magn Reson Imaging. 2013 Jan;37(1):243-8. doi: 10.1002/jmri.23750. Epub 2012 Jul 12.
3
Smoothly clipped absolute deviation (SCAD) regularization for compressed sensing MRI using an augmented Lagrangian scheme.
Magn Reson Imaging. 2013 Oct;31(8):1399-411. doi: 10.1016/j.mri.2013.05.010. Epub 2013 Jul 24.
4
Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction.
Z Med Phys. 2014 Mar;24(1):16-26. doi: 10.1016/j.zemedi.2013.05.003. Epub 2013 Jun 10.
7
Improved compressed sensing reconstruction for F magnetic resonance imaging.
MAGMA. 2019 Feb;32(1):63-77. doi: 10.1007/s10334-018-0729-1. Epub 2019 Jan 2.
8
Accelerated imaging of metallic implants using model-based nonlinear reconstruction.
Magn Reson Med. 2019 Apr;81(4):2247-2263. doi: 10.1002/mrm.27536. Epub 2018 Dec 4.
10
Pseudo-Polar Fourier Transform-Based Compressed Sensing MRI.
IEEE Trans Biomed Eng. 2017 Apr;64(4):816-825. doi: 10.1109/TBME.2016.2578930. Epub 2016 Jun 9.

引用本文的文献

2
Clinical evaluation of isotropic MAVRIC-SL for symptomatic hip arthroplasties at 3 T MRI.
Magn Reson Imaging. 2024 Sep;111:256-264. doi: 10.1016/j.mri.2024.04.017. Epub 2024 Apr 15.
3
Modern acceleration in musculoskeletal MRI: applications, implications, and challenges.
Skeletal Radiol. 2024 Sep;53(9):1799-1813. doi: 10.1007/s00256-024-04634-2. Epub 2024 Mar 5.
7
State-of-the-Art Imaging Techniques in Metastatic Spinal Cord Compression.
Cancers (Basel). 2022 Jul 5;14(13):3289. doi: 10.3390/cancers14133289.
8
Clinical utility of accelerated MAVRIC-SL with robust-PCA compared to conventional MAVRIC-SL in evaluation of total hip arthroplasties.
Skeletal Radiol. 2022 Mar;51(3):549-556. doi: 10.1007/s00256-021-03848-y. Epub 2021 Jul 5.
10
Traumatic and nontraumatic spinal cord injury: pathological insights from neuroimaging.
Nat Rev Neurol. 2019 Dec;15(12):718-731. doi: 10.1038/s41582-019-0270-5. Epub 2019 Oct 31.

本文引用的文献

1
Coil compression for accelerated imaging with Cartesian sampling.
Magn Reson Med. 2013 Feb;69(2):571-82. doi: 10.1002/mrm.24267. Epub 2012 Apr 9.
2
MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques.
AJR Am J Roentgenol. 2011 Sep;197(3):W405-11. doi: 10.2214/AJR.11.6659.
3
New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact.
J Magn Reson Imaging. 2011 May;33(5):1121-7. doi: 10.1002/jmri.22534.
4
Slice encoding for metal artifact correction with noise reduction.
Magn Reson Med. 2011 May;65(5):1352-7. doi: 10.1002/mrm.22796. Epub 2011 Feb 1.
5
Profile of inpatient operating room procedures in US hospitals in 2007.
Arch Surg. 2010 Dec;145(12):1201-8. doi: 10.1001/archsurg.2010.269.
6
Imaging near metal with a MAVRIC-SEMAC hybrid.
Magn Reson Med. 2011 Jan;65(1):71-82. doi: 10.1002/mrm.22523.
7
SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
Magn Reson Med. 2010 Aug;64(2):457-71. doi: 10.1002/mrm.22428.
8
Accelerated slice encoding for metal artifact correction.
J Magn Reson Imaging. 2010 Apr;31(4):987-96. doi: 10.1002/jmri.22112.
9
Message-passing algorithms for compressed sensing.
Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):18914-9. doi: 10.1073/pnas.0909892106. Epub 2009 Oct 26.
10
SEMAC: Slice Encoding for Metal Artifact Correction in MRI.
Magn Reson Med. 2009 Jul;62(1):66-76. doi: 10.1002/mrm.21967.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验