Kampf Thomas, Sturm Volker J F, Basse-Lüsebrink Thomas C, Fischer André, Buschle Lukas R, Kurz Felix T, Schlemmer Heinz-Peter, Ziener Christian H, Heiland Sabine, Bendszus Martin, Pham Mirko, Stoll Guido, Jakob Peter M
Department of Neuroradiology, University Hospital Würzburg, 97080, Würzburg, Germany.
Experimental Physics V, University of Würzburg, 97074, Würzburg, Germany.
MAGMA. 2019 Feb;32(1):63-77. doi: 10.1007/s10334-018-0729-1. Epub 2019 Jan 2.
In magnetic resonance imaging (MRI), compressed sensing (CS) enables the reconstruction of undersampled sparse data sets. Thus, partial acquisition of the underlying k-space data is sufficient, which significantly reduces measurement time. While F MRI data sets are spatially sparse, they often suffer from low SNR. This can lead to artifacts in CS reconstructions that reduce the image quality. We present a method to improve the image quality of undersampled, reconstructed CS data sets.
Two resampling strategies in combination with CS reconstructions are presented. Numerical simulations are performed for low-SNR spatially sparse data obtained from F chemical-shift imaging measurements. Different parameter settings for undersampling factors and SNR values are tested and the error is quantified in terms of the root-mean-square error.
An improvement in overall image quality compared to conventional CS reconstructions was observed for both strategies. Specifically spike artifacts in the background were suppressed, while the changes in signal pixels remained small.
The proposed methods improve the quality of CS reconstructions. Furthermore, because resampling is applied during post-processing, no additional measurement time is required. This allows easy incorporation into existing protocols and application to already measured data.
在磁共振成像(MRI)中,压缩感知(CS)能够重建欠采样的稀疏数据集。因此,对基础k空间数据进行部分采集就足够了,这显著减少了测量时间。虽然功能磁共振成像(fMRI)数据集在空间上是稀疏的,但它们往往信噪比(SNR)较低。这可能会导致CS重建中出现伪影,从而降低图像质量。我们提出了一种提高欠采样重建CS数据集图像质量的方法。
提出了两种与CS重建相结合的重采样策略。对从f化学位移成像测量中获得的低SNR空间稀疏数据进行了数值模拟。测试了欠采样因子和SNR值的不同参数设置,并根据均方根误差对误差进行了量化。
两种策略均观察到与传统CS重建相比,整体图像质量有所提高。具体而言,背景中的尖峰伪影得到了抑制,而信号像素的变化仍然很小。
所提出的方法提高了CS重建的质量。此外,由于重采样是在后期处理中应用的,因此不需要额外的测量时间。这使得该方法可以轻松地纳入现有协议并应用于已测量的数据。