Suppr超能文献

压缩感知在直接 PET 图像重建中降低噪声和伪影。

Compressed sensing for reduction of noise and artefacts in direct PET image reconstruction.

机构信息

Department of Nuclear Medicine, University of Würzburg, Germany.

Department of Experimental Physics 5, University of Würzburg, Germany.

出版信息

Z Med Phys. 2014 Mar;24(1):16-26. doi: 10.1016/j.zemedi.2013.05.003. Epub 2013 Jun 10.

Abstract

AIM

Image reconstruction in positron emission tomography (PET) can be performed using either direct or iterative methods. Direct reconstruction methods need a short reconstruction time. However, for data containing few counts, they often result in poor visual images with high noise and reconstruction artefacts. Iterative reconstruction methods such as ordered subset expectation maximization (OSEM) can lead to overestimation of activity in cold regions distorting quantitative analysis. The present work investigates the possibilities to reduce noise and reconstruction artefacts of direct reconstruction methods using compressed sensing (CS).

MATERIALS AND METHODS

Raw data are generated either using Monte Carlo simulations using GATE or are taken from PET measurements with a Siemens Inveon small-animal PET scanner. The fully sampled dataset was reconstructed using filtered backprojection (FBP) and reduced in Fourier space by multiplication with an incoherently undersampled sampling pattern, followed by an additional reconstruction with CS. Different sampling patterns are used and an average of the reconstructions is taken. The images are compared to the results of an OSEM reconstruction and quantified using signal-to-noise ratio (SNR).

RESULTS

The application of the proposed CS post-processing technique clearly improves the image contrast. Dependent on the undersampling factor, noise and artefacts are reduced resulting in an SNR that is increased up to 3.4-fold. For short acquisition times with low count statistics the SNR of the CS reconstructed image exceeds the SNR of the OSEM reconstruction.

CONCLUSION

Especially for low count data, the proposed CS-based post-processing method applied to FBP reconstructed PET images enhances the image quality significantly.

摘要

目的

正电子发射断层扫描(PET)中的图像重建可以使用直接或迭代方法进行。直接重建方法需要较短的重建时间。然而,对于包含少量计数的数据,它们通常会导致视觉图像噪声大且重建伪影多。有序子集期望最大化(OSEM)等迭代重建方法可能会导致冷区活性的高估,从而扭曲定量分析。本工作研究了使用压缩感知(CS)降低直接重建方法噪声和重建伪影的可能性。

材料和方法

原始数据是使用 GATE 进行的蒙特卡罗模拟生成的,或者是从西门子 Inveon 小动物 PET 扫描仪的 PET 测量中获取的。全采样数据集使用滤波反投影(FBP)重建,并在傅里叶空间中通过与非相干欠采样采样模式相乘进行缩减,然后使用 CS 进行额外重建。使用不同的采样模式并取重建结果的平均值。将图像与 OSEM 重建结果进行比较,并使用信噪比(SNR)进行量化。

结果

所提出的 CS 后处理技术的应用明显改善了图像对比度。根据欠采样因子,噪声和伪影减少,导致 SNR 提高了 3.4 倍。对于低计数统计数据的短采集时间,CS 重建图像的 SNR 超过了 OSEM 重建的 SNR。

结论

特别是对于低计数数据,应用于 FBP 重建的 PET 图像的基于 CS 的后处理方法可显著提高图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验